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Abstract

Modern deep learning has recently revolutionized several fields of classic machine learning

and computer vision, such as, scene understanding, natural language processing and machine

translation. The substitution of feature hand-crafting with automatic feature learning,

provides an excellent opportunity for gaining an in-depth understanding of large-scale data

statistics. Deep neural networks generally train models with huge numbers of parameters,

facilitating efficient search for optimal and sub-optimal spaces of highly non-convex objective

functions. On the other hand, Fisher discriminant analysis has been widely employed to

impose class discrepancy, for the sake of segmentation, classification, and recognition tasks.

This thesis bridges between contemporary deep learning and classic discriminant analysis,

to accommodate some important challenges in visual scene understanding, i.e. semantic

segmentation, texture classification, and object recognition. The aim is to accomplish specific

tasks in some new high-dimensional spaces, covered by the statistical information of the

datasets under study. Inspired by a new formulation of Fisher discriminant analysis, this thesis

introduces some novel arrangements of well-known deep learning architectures, to achieve

better performances on the targeted missions. The theoretical justifications are based upon a

large body of experimental work, and consolidate the contribution of the proposed idea; Deep

Fisher Discriminant Learning, to several challenges in visual scene understanding.
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Chapter 1

Introduction

Fisher Discriminant Analysis (FDA) is a well-known statistical method, used to tackle the

curse of dimensionality and to provide efficient supervised classification. Recent advances

in the field of artificial neural networks, have led to a successful trend for automatic feature

crafting, known as, deep learning. Visual scene understanding as a fundamental challenge in

modern computer vision, has recently been addressed with considerably higher precision, using

deep learning algorithms. This thesis investigates the unification of FDA and deep learning,

to introduce some novel deep neural architectures that deliver better outcomes than classic

deep neural networks. The proposed architectures are specified to visual scene understanding

tasks, such as semantic segmentation, texture classification, and object recognition. Extensive

experiments confirm that, they are able to improve state-of-the-art performances in various

standard benchmarks of computer vision.

1.1 Overview

Linear dimensionality reduction has become the cornerstone analysis of high-dimensional data,

due to its simple geometrical interpretation and its attractive computational properties. This

captures many features of interest in data, such as, covariance, dynamical structure, correlation

between datasets, input-output relationships, and the margins between data classes. A variety

of methods have been developed for linear dimensionality reduction, one of which is FDA.

1



2 Introduction

1.1.1 Semantic Segmentation

Reformulation of FDA introduces a novel, supervised colour transformation that helps

to improve the performance of pixelwise classification. This transformation uses class

information to project the initial colour space into an intermediate high-dimensional space,

spanned by the number of classes. This then follows with a subspace projection to make a new

colour space, with the same dimension as the primary colour space.

The reason is that, any standard colour transformation needs to map the primary colours

into the same number of channels and range of colours. To comply with the primary range of

colours, anisotropic scaling-translation is applied to the projected colour space. The pipeline

of projection, backprojection, and anisotropic transformation, produces a nonlinear mapping

of the primary colour space into a target space, with higher class distinction. The target colour

space significantly enhances the precision of semantic segmentation by imposing better class

separation, learned from the distribution of data and classes.

The projection is inspired by FDA and the backprojection is applied through metric

Multi-Dimensional Scaling (MDS). The former tries to improve the distinction across classes

by minimizing the ratio of inter-intra class scatterings, while the latter preserves the imposed

discrepancy, by means of a metric subspace mapping. They are followed by the anisotropic

scaling-translation to form the target colour space. The extensive experiments show that,

the supervised colour transformation can produce new colour spaces, that outperform several

standard colour spaces in pixelwise semantic segmentation.

1.1.2 Texture Classification

For the purpose of texture understanding, a specific Convolutional Neural Network (CNN) is

introduced, that tries to address texture classification by learning the scale, orientation and

resolution of each texture filters, rather than the whole filter itself. Using a FDA-inspired

objective function, this novel architecture is able to train a large bank of distributed texture

filters in several variable-depth layers, and makes an ensemble of convolutional features, for

the sake of texture recognition.
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Another contribution is a new Autoencoder Network (AEN), that is able to learn separable

and parametric texture filters, by a FDA-based coder-decoder formulation. This network is

able to train a banks of texture filters and aggregate the convolutional responses, to form

an ensemble of high-distinction features, for the texture recognition. The experiments are

conducted on several publicly-available texture datasets, varying in the number of classes

and the quality of texture samples. The results confirm the advantage of the proposed deep

architectures, to enhance the precision of texture classification, in standard benchmarks.

1.1.3 Object Recognition

One of the preliminary tasks in visual scene understanding is object recognition. To address

this challenge by deep learning, some novel contributions to pooling, transfer learning and

multi-objective learning, are made in this thesis.

A supervised rank pooling method is discussed, that selects the most informative

activations by learning from the discrepancy among deep convolutional responses in pooling

layers. Here, multipartite ranking is used to score the features, based on the class

discriminations (Fisher’s criterion) in the dataset under study; this then picks the high-ranked

features from each pooling window, instead of the average or maximum of the assignments.

The complex wiring between neural layers and imbalanced distribution of data, make

it a hard task to transfer learning between deep convolutional neural networks. Instead of

fine-tuning the whole fully-connected layers, a distributed backpropagation is introduced that

feeds each convolutional filters separately, whilst backpropagates all the filters jointly, using

basic probability assignment of the evidence theory. Consequently, the trained convolutional

filters in primary domain, are transferred to the target domain, considering their individual

contributions, as well as, their joint gradients.

Deploying of various objective functions in a deep convolutional network, is proved

advantageous to improve the overall classification performance. A unified backpropagation

scheme is proposed to link the optimization of multi-objective cost functions, including

Softmax, Support Vector Machines (SVM), and Linear Discriminant Analysis (LDA). This

tackles the extensive burden of boosting for various objective functions or complex formulation

of multi-objective gradients, by employing basic probability assignment. In practice, the

unified backpropagation links gradients of multi-objective losses to update the parameters.



4 Introduction

1.2 Outline

The remainder of this thesis is divided into a series of parts and chapters, where the challenges

outlined above, are discussed in detail.

• Chapter 2: Literature Review

A comprehensive survey of discriminant analysis methods and deep learning

architectures, is provided and contributions of this thesis, are contrasted against.

• Chapter 3: Discriminant Analysis

The classic linear dimensionality reduction is introduced, and then, its formulation is

extended to define a supervised projection into high-dimensional spaces, spanned by the

number of classes in the dataset at hand.

• Part I (Chapter 4): Semantic Segmentation

A supervised colour transformation for pixelwise semantic segmentation is presented.

This transformation aims to use FDA for imposing the highest possible discrimination

between classes, that benefits any classifier of choice.

• Part II (Chapters 5, 6): Texture Classification

Inspired by FDA, some novel deep architectures; Fisher CNN and Fisher AEN, are

introduced to learn banks of parametric or separable filters, for texture understanding.

• Part III (Chapters 7, 8, 9): Object Recognition

Some contributions towards core concepts of deep learning, targeting object recognition,

are explained. They employ FDA for a new pooling scheme, and use basic

probability assignment of the evidence theory, to perform transfer learning (distributed

backpropagation) and multi-objective learning (unified backpropagation).

• Chapter 10: Conclusion

All of the above discussions are wrapped up and a summary is provided. Finally, some

ideas for future work, are presented.
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Australia, December 2016
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Autoencoders," The British Machine Vision Conference (BMVC’16), York, UK,

September 2016
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International Conference on Image Processing (ICIP’16), Phoenix, Arizona, USA,
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Chapter 2

Literature Review

This chapter provides a survey of discriminant analysis and deep learning. The treatment here,

avoids complex formulations in favour of presenting a narrative, comprising short descriptions

of the fundamental concepts, relevant to this thesis.

2.1 Discriminant Analysis

Linear dimensionality reduction has been used for the analysis of high-dimensional data,

and it is a well-known concept of statistical machine learning. This technique computes a

linear mapping from the original high-dimensional data into a low-dimensional representation,

while preserves specific statistics of the data. It can be used for data visualization, structural

analysis, feature extraction, and compression. This survey introduces algorithms of linear

dimensionality reduction, followed by discussions on linear discriminant analysis. These are

specially formulated from an optimization viewpoint (Cunningham and Ghahramani [2015]).

2.1.1 Linear Dimensionality Reduction

To start, minimizing the sum of squared residual errors between projected and original

data points, or maximizing the variance deviation, is the general formulation of Principal

Component Analysis (PCA) (Eckart and Young [1936]). The solution corresponds to the

largest eigenvalues, produced by singular value decomposition of the covariance matrix.

Probabilistic Principal Component Analysis (PPCA) (Theobald [1975]), uses PCA to partition

the data into an orthogonal set of noise and a linear mapping into lower dimensions.

7
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The more general case of PCA is Factor Analysis (FA) (Spearman [1904]). This fits

the noise per observation rather to all observations, which adds scale-invariance to each

measurement, but loses the rotational invariance across observations. When the data has some

associated class labels, FDA (Fisher [1936]) projects the original data, in order to maximize the

separation between classes. As a result, the data covariance is partitioned into the covariance

contributed within each class and the covariance between each class. FDA assumes Gaussian

distributions with the same variance.

Taking into account multiple datasets, Canonical Correlations Analysis (CCA) (Hotelling

[1936]), tries to find a set of low-dimensional mappings, that maximizes the correlations

between projected datasets. Maximum Autocorrelation Factors (MAF) (Switzer and

Green [1984]), assumes a predefined order for the high-dimensional data to preserve

temporally-interesting structure, and seeks a low-dimensional representation that includes

temporal structure. Undercomplete Independent Component Analysis (UICA) (Hyvärinen

et al. [2001]), preprocesses mixed data with PCA to reduce the data to lower dimensions,

and then, runs a standard independent component analysis.

Slow Feature Analysis (SFA) (Wiskott [2003]), recovers a slowly moving projection of

data, that may produce a meaningful representation of the features, when the measured data

can have rapidly changing values over time, even though the features of interest move more

slowly. This minimizes the trace of projection of the covariance. In contrast to PCA that

minimizes low-dimensional reconstruction error, MDS (Borg and Groenen [2005]) maximizes

the scatter of projection, to yield the most informative projection. Locality Preserving

Projection (LPP) (He et al. [2005]), considers local neighbourhood structure. This avoids

outliers and nonlinear distortion in the data, by constructing a neighbourhood graph of the

training data, and by using that to define the loss function.

For better feature selection in a supervised learning regime, Sufficient Dimensionality

Reduction (SDR) (Johnstone and Titterington [2009]), finds an orthogonal projection

of the data. The reduced-dimension points capture all statistical dependency between

high-dimensional covariates and responses. One of the most popular methods in statistical

modelling is Linear Regression (LR) (Adragni and Cook [2009]), that maps high-dimensional

data onto a low-dimensional hyperplane, defined by the number of independent variables.
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2.1.2 Linear Discriminant Analysis

LDA is a widely-used supervised dimensionality reduction method in computer vision and

pattern recognition. This aims to impose the highest possible discrepancy among classes, by

maximizing the between-class distances, whilst minimizing the within-class scattering (Fisher

[1936]). Numbers of extensions to the classic LDA, have been proposed in the literature.

Subspace LDA (Zhao et al. [1999]), first employs PCA to project the data from the original

vector space into a subspace, where the subspace dimension is carefully chosen, and then uses

LDA to obtain a linear classifier in this subspace. This also employs a weighted distance

metric, guided by LDA eigenvalues, to improve the performance. Null-space LDA (Chen et al.

[2000]), proposes a technique to solve the small sample size problem, considering that the most

expressive PCA-driven vectors in the null space of the within-class scatter matrix, are equal to

the optimal discriminant vectors, derived in the original space by LDA.

Orthogonal Centroid LDA (Park et al. [2003]), provides a mathematical framework for

low-dimensional representation in vector space, using a matrix rank reduction formula. This

also introduces new methods for dimension reduction based on the centroids of data clusters,

when a priori information on the cluster structure of the data, is at hand. Uncorrelated LDA (Ye

[2005]), is a generalized discriminant analysis, based on a new optimization criterion which

extends the objective function of LDA, when the scatter matrices are singular. The features

in this reduced space, are highly uncorrelated, in contrast to orthogonal LDA (Prasad et al.

[2010]), that the discriminant vectors are quite orthogonal to each other.

Regularized LDA (Guo et al. [2007]), introduces a modified version of LDA, that

generalizes the idea of the Nearest Shrunken Centroids (NSC) (Tibshirani et al. [2003]).

Sparse LDA (Ye et al. [2008]), presents a novel formulation of LDA, that employs multivariate

linear regression with L1-norm penalty, controlled by a regularization parameter, for feature

extraction and visualization. This is based on the equivalence relationship between LDA and

the least-squares method for multiclass classification.

In contrast to the dimension reduction methods, this thesis introduces Fisher discrimination

for dimension expansion (Shahriari et al. [2014]), imposing better class distinction into the

representations in higher dimensions. When this follows by a proper subspace mapping

algorithm, the class separation holds to the best advantage of any supervised classifiers.
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2.2 Deep Learning

Artificial neural networks are, connected architectures of computational units called neurons.

They are generally organized in an input layer, several hidden layers, and an output layer. The

adjacent layers are usually fully-connected, so that, every neuron in a layer is linked to every

neuron of the next layer. There is a vast variety of deep learning architectures in the literature.

2.2.1 Architectural Overview

Feeding the information from input to output layers, Feedforward Neural Network (FNN) and

Perceptron (Rosenblatt [1958]), are trained by error backpropagation. The parameters are

updated by gradient of difference between predicted and actual output. However, they are not

popular today. Radial Basis Function network (RBF) (Broomhead and Lowe [1988]) employs

the same architecture and is activated by radial basis function.

In contrast to perceptrons, each neuron of Hopfield Neural Network (HNN) (Hopfield

[1982]), behaves as an input before, a hidden node during, and an output after training. As

a result, this only converges to special patterns, preassigned to these neurons in advance.

For Kohonen Network (KN) (Kohonen [1982]), neurons are adjusted to match the input, by

dragging along their neighbours.

Boltzmann Machines (BM) (Hinton and Sejnowski [1986]), are similar to Hopfield

network, but each neuron is specifically marked as an input, hidden or output node. This is

initialized randomly and, is trained by the backpropagation, which gives more binary activation

patterns to the neurons, as compared to HNN.

Restricted Boltzmann Machines (RBM) (Smolensky [1986]), are the restricted version of

HNN and BM, since they do not directly connect input neurons to other input nodes, or hidden

neurons to other hidden units. They are trained by forward-backward passes of the data, rather

than passing forward and then, backpropagating.

Stacked Boltzmann machines, also called Deep Belief Networks (DBN) (Bengio et al.

[2007]), are typically trained stack by stack; which is known as greedy training, through

contrastive divergence or backpropagation. They can be used to either generate new data or

classify the existing one.
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Convolutional Neural Network (CNN) (LeCun et al. [1998]), proves beneficial for various

applications of image classification. This network usually crawls an image by neighbouring

patches to feed the convolutional layers. By going deeper, these convolutional layers shrink by

powers of two and use max pooling to pick the details.

Reversed convolutional neurons form Deconvolutional Network (DN) (Zeiler et al. [2010]),

that is fed by a word and responds by generating a corresponding picture. Here, the pooling

layers are replaced with the similar inverse operations, for example, min pooling instead of

max pooling and so on. Deep Convolutional Inverse Graphics Network (DCIGN) (Kulkarni

et al. [2015]), encodes the input by using a CNN and, decodes it with a DN. This is trained by

backpropagation and, is also able to model the complex transformations on an image.

Autoencoder Network (AEN) (Bourlard and Kamp [1988]), is similar to feedforward

network and encodes information automatically. The hidden layers are usually smaller than

the input-output layers; and the layers are arranged symmetrically. The encoding layers sit

before and the decoding ones sit after the middle layers. They are generally trained by gradient

descent and backpropagation. Variational AEN (Kingma and Welling [2013]), learns by the

probability distribution of input. This uses Bayesian mathematics to rule out the nodes that

influence each others.

Acting on temporal data streams, Recurrent Neural Network (RNN) (Elman [1990]),

connects through time, so that, neurons are fed by other neurons. Hence, the order of feeding

matters here. It is not only useful for sound or video sequences, but also, for completing image

or text information. The problem of vanishing gradients over time in RNN, is more difficult to

avoid than other deep architectures, which only loose information in depth.

To tackle the vanishing gradients, Long-Short Term Memory Network (LSTM) (Hochreiter

and Schmidhuber [1997]), uses gates and memory cells. The gates protect information inside

memory cells, by controlling the flow of data into them. The input and output gates decide,

how much information is entered from previous neurons or, is exported to the next cell. Forget

gates lock the sate of the memory cell, to prevent interference from the current and recent

states. This network is successful on complex sequences, although they need more computing

resources, in comparison with RNN.
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Gated Recurrent Unit (GRU) (Chung et al. [2014]), is a variation of LSTM, in terms of

gating and wiring. It has an update gate to tune the flow of data, and a reset gate to forget, which

makes them faster and easier to run than LSTM. Neural Turing Machines (NTM) (Graves et al.

[2014]), do not code the memory cell into a neuron and combine the power of neural networks

with addressable memory banks.

Employing a threshold function instead of sigmoid activation, a neuron in Liquid State

Machines (LSM) (Maass et al. [2002]), accumulates on itself, until it reaches a certain

threshold and fires to other neurons, creating a spiking pattern. Echo State Network

(ESN) (Jaeger and Haas [2004]), is a type of RNN, that set random connections between its

neurons. This feeds the input, updates the neurons, and observes the output over time. During

training, only the connections between the top layer and hidden units are changed. Extreme

Learning Machines (ELM) (Cambria et al. [2013]), are another random connected network,

like LSM or ESN, but these are employed like a FNN.

Generative Adversarial Network (GAN) (Goodfellow et al. [2014]), is a twin network; one

generates contents and the other judges them. The discriminating network receives input or

generative data, and the error is calculated based on its prediction regarding the data source. It

can be difficult to strike a balance between prediction and generation, for these twins. Deep

Residual Network (DRN) (He et al. [2015]), is a very deep FNN with direct connections of one

layer, to another deeper layer, plus the next one. This trains very deep representations without

the burden of vanishing gradients.

2.2.2 Convolutional Neural Network

Inspired by the organization of animal visual cortex (Hubel and Wiesel [1962]), CNN

has shown promising performance in processing of two-dimensional data, such as, single

images or video streams (Krizhevsky et al. [2012]). It is the first truly successful deep

learning architecture, trained in hierarchical layers by sparse interaction, parameter sharing

and equivariant representation (Goodfellow et al. [2016a]). Some variants to the classic CNN

architecture, have been introduced in the literature.



§2.2 Deep Learning 13

Convolutional Restricted Boltzmann Machines (CRBM) (Desjardins and Bengio [2008]),

employ RBM in CNN, by computing convolutions with normal RBM, as the kernel. Although

the number of parameters in RBM, depends on the dimension of the input image, the

complexity of this architecture, only relates to the number of features to be extracted, and

the size of the receptive field. Convolutional Deep Belief Network (CDBN) (Krizhevsky and

Hinton [2010]) uses a combination of locally-globally connected units, as well as, a few tricks

to reduce the effects of overfitting, to achieve better performance for classification.

FFT-based CNN (Mathieu et al. [2013]), presents an algorithm which accelerates training

and inference, by computing convolutions as pointwise products in the Fourier domain. This

reuses the same transformed feature map, several times. Mel-filter bank CNN (Sainath et al.

[2013]), replaces the filter bank with a layer, that is learned jointly with the rest of network,

and minimizes cross-entropy, which is more closely tied to a speech recognition objective.

Recursive CNN (Eigen et al. [2013]), addresses the challenge of appropriate sizing

of the network, including number of layers, feature maps, kernel sizes, and etc. This

focuses on assessing the independent contributions of these linked variables, using a recursive

architecture, whose weights are tied between layers.

2.2.3 Autoencoder Network

AEN (Hinton and Salakhutdinov [2006]), learns low-dimensional codes that work better than

PCA, to reduce the dimensionality of data, using gradient descent. It fine-tunes the weights

by finding an effective way to initialize them. This is trained to encode the input into a

representation, so that, the input can be reconstructed from that representation. Hence, AEN

continuously extracts some useful features, during the propagation phase, while filters the

useless information, at the same time.

Sparse AEN (Ranzato et al. [2006]), learns sparse overcomplete features. It uses a linear

encoder and a linear decoder, preceded by a sparsifying nonlinearity, that turns a code vector

into a quasi-binary sparse code vector. Given an input, the optimal code minimizes the distance

between the output of the decoder and the input patch while being, as similar as possible, to

the encoder output.
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Multistage AEN (Jarrett et al. [2009]), combines CNN and AEN using some nonlinearities,

including rectification and local contrast normalization. Stacked Convolutional AEN (Masci

et al. [2011]), is a novel convolutional architecture for unsupervised feature learning. A stack

of convolutional autoencoders forms a CNN, that each of the autoencoders, is trained using

conventional gradient descent, without additional regularization terms.

Denoising AEN (Vincent [2011]), is a competitive alternative to RBM, for unsupervised

pretraining of each layer in a deep architecture. Its training criterion is equivalent to matching

the score of a specific energy-based model to that of a non-parametric Parzen density estimator

of the data. This suggests a different way to apply score matching for denoising and, does

not compute the second derivatives. Stacked Denoising AEN (Vincent et al. [2010]), stacks

layers of denoising autoencoders, which are trained locally to denoise corrupted versions of

their inputs. It is also able to learn Gabor-like edge detectors from image patches and, larger

stroke detectors from digit images.

Contractive AEN (Rifai et al. [2011]), adds a well-chosen penalty term to the classical

reconstruction cost function, corresponding to the Frobenius norm of the Jacobian matrix of the

encoder activations, with respect to the input. Inspired by improved performance of imposing

sparsity, k-Sparse AEN (Makhzani and Frey [2013]), is an autoencoder network with linear

activation function, where only the k highest activities are kept in the hidden layers. This is

simple to train and its encoding stage is very fast, making it well-suited to large-scale problems,

where conventional sparse coding algorithms cannot be applied.

Separable Deep AEN (Sun et al. [2016]), employs deep autoencoders for accurate

modelling of the clean data. Then, extra deep autoencoders are introduced to represent the

residual part, obtained by subtracting the estimated clean data from noisy data. The enhanced

representation is thus obtained, by transforming this back into the time domain.

2.2.4 Deep Discriminant Analysis

Composition of LDA and deep learning, has been proposed in recent publications. This mostly

employs LDA or its extensions, as objective functions on the top of a deep neural network.

Here, the contributions of this thesis contrasts against what has already been done.
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Deep Generalized Discriminant Analysis ( DGDA) (Stuhlsatz et al. [2012]), assumes

discriminative features, generated from independent Gaussian class-conditionals. Since LDA

employs linear discriminant function, it is insufficient to extract optimal discriminative features

from arbitrarily distributed raw measurements. DGDA uses nonlinear transformations, that are

learned by deep neural networks in a semi-supervised manner. This maps high-dimensional

input data into a low-dimensional representation, to facilitate accurate prediction.

In this thesis, Fisher CNN (Shahriari [2016a]), introduces a new combination of FDA

and CNN, that applies Fisher discrimination in a layer-wise architecture, to generate a

high-dimensional convolutional representation. In contrast to DGDA, this uses supervised

learning to project the low-dimensional input, into higher dimensions, spanned by the number

of classes in the dataset under study.

Deep Linear Discriminant Analysis (DLDA) (Dorfer et al. [2015]), learns a nonlinear

extension of LDA, that preserves class separability, for the purpose of linear dimensionality

reduction and classification. Instead of maximizing the likelihood of target labels for individual

samples by categorical cross entropy, this proposes an objective function to produce features

with low variance within the same class and high variance between different classes. The

objective function of DLDA, is derived from the general LDA eigenvalue problem and, is

trained with the classic backpropagation.

The Fisher CNN is also different from DLDA, because the objective function still remains

a categorical cross entropy, and FDA is only employed for supervised feature crafting. It is also

able to learn the convolutional filters in a distributed manner, while the depth of layers varies

for each filter, in accordance with its capability to make better distinction among classes.

Deep Fisher Network (DFN) (Simonyan et al. [2013]), introduces discriminatingly trained

convolutional neural networks, by stacking Fisher vector encoding, in multiple layers. This

significantly improves the precision over standard Fisher vectors, and obtains competitive

results with deep convolutional networks, at a smaller computational cost. Deep Fisher Kernel

(DFK) (Sydorov et al. [2014]) unifies Fisher kernels and deep learning to transfer ideas from

one domain to the other, by interpreting a multilayer feed-forward network. The final layer

is the classifier, parametrized by a weight vector, and the two previous layers compute Fisher

vectors, parametrized by the coefficients of a Gaussian mixture model.
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This thesis presents Fisher AEN (Shahriari [2016b]), that is a novel way of linking the FDA

with AEN. This replaces coder-encoder layers with dimension expansion-reduction modules.

It employs Fisher vector encoding to make a high-distinction dictionary at the top layer, that is

in contrast to DFN, which stacks Fisher vector encoding, in a multilayer architecture.

Hybrid Fisher Vectors (HFV) (Perronnin and Larlus [2015]), combine the strengths of

Fisher vectors and deep learning. The early unsupervised layers rely on the Fisher vectors,

while the subsequent fully-connected supervised layers, are trained with backpropagation.

Fisher Vector Network (FVN) (Wu et al. [2017]), maps nonlinear representations of images

into a linearly-separable space, by reinforcing a LDA on top of the deep neural network.

This Optimizes a LDA-based objective function, with stochastic gradient descent, and

back-propagates LDA gradients, involved in Fisher vector encoding. It is due to the fact that,

gradient of cross-entropy loss may help enlarging the inter-class differences, while it is unable

to reduce the intra-class variations.

The Fisher AEN also does not use any Fisher kernels (like DFK), or is not trained by

backpropagation on Fisher vectors (like HFV). Instead of involving Fisher vector encoding

in the gradients (like FVN), the Fisher AEN backpropagates through standard formulation of

gradient, generally employed by a classic AEN, to update the learning parameters.



Chapter 3

Fisher Discrimination

There is a vast amount of evidence, demonstrating the effectiveness of discriminant analysis

methods for maximizing class separability. The Fisher’s criterion has been extensively used

in LDA and a wide variety of its extensions. For instance, Non-parametric LDA considers

boundary information in inter-class scattering. The kernel version of LDA (Baudat and

Anouar [2000]), handles a extreme nonlinearity of the sample set. There are also a number

of methods, which aim to overcome singularity of the inverse intra-class covariance matrix of

the mapped space. In a related development, dual subspaces are employed to construct LDA

classifiers (Wang and Tang [2004]). This chapter starts with formulation of the conventional

LDA for subspace mapping into low-dimensional spaces (dimension reduction), then proceeds

to revisit this formulation for projection into high-dimensional spaces (dimension expansion),

and finally ends up with the introduction of distributed Fisher discrimination.

3.1 Fisher Discrimination for Dimension Reduction

Suppose an input set X = {(x1, c1), . . . , (xN , cN)}, such that (xi, ci) ∈ Rd × C for all the

i ∈ [1, N] and C is a discrete set of classes. For a dimension reduction regime, the aim is

to find a matrix B ∈ Rd×c that maps the input vector xi onto the vector yi = BTxi in a

low-dimensional space Y = {y1, . . . , yN}, such that yi ∈ Rc for all i ∈ [1, N], conditioned

on c � d. This mapping tries to maximize the separability between classes of the set X and

minimize the scattering within them, using Fisher’s criterion. One approach to compute this

mapping, is supervised learning by LDA (Bishop [2006]).

17
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The mapping matrix can be determined by maximizing the Fisher’s criterion JB given by,

JB = tr
[(

BTSwBB
)−1(BTSbBB

)]
(3.1)

where tr(.) is the diagonal summation operator. Here, the within-between class scatterings of

set SB = {SwB, SbB} are defined as,

SwB =
c

∑
j=1

∑
xi∈Cj

(xi − µj)(xi − µj)
T (3.2)

SbB =
c

∑
j=1

(µj − µ̄)(µj − µ̄)T (3.3)

where c, µj and µ̄ are number of classes, mean over class Cj, and mean over the set X . The

SwB ∈ Rd×d can be regarded as the average class-specific covariance, whereas the SbB ∈

Rd×d can be viewed as the mean distance between all different classes. The purpose of JB is

to maximize the between-class scatter, while preserving within-class dispersion.

The solution can be retrieved from a generalized eigenvalue problem SbBB = λSwBB.

Since the rank of SbB is c− 1, the solution for c classes, is eigenvectors corresponding to the

largest c eigenvalues of S−1
wBSbB, subject to c � d (Fukunaga [1990]). To prove this solution,

consider the matrix B ∈ Rd×c that maps a d-dimensional space X to a c-dimensional space Y ,

Y = BTX (3.4)

subject to the fact that, X and Y are linearly independent, but not necessarily orthogonal.

Since the scatter matrices in the X -space i.e. SwX = SwB and SbX = SbB, are of the form of

a covariance matrix, the scatterings of Y-space can be expressed as follows,

SwY = BTSwXB

SbY = BTSbXB (3.5)
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Now, Equation 3.1 can be reformulated as,

JB = tr(S−1
wYSbY ) = tr

[(
BTSwXB

)−1(BTSbXB
)]

(3.6)

To maximize Equation 3.6, its derivative with respect to B can be set to zero.

δJB

δB
= −2SwXBS−1

wYSbYS−1
wY + 2SbXBS−1

wY = 0 (3.7)

Then, the optimum B should satisfy,

(S−1
wXSbX )B = B(S−1

wYSbY ) (3.8)

It is possible to diagonalize SbY and SwY to Λc and Ωc, using a linear transformation

Z = CX , such that C ∈ Rc×c is a non-singular square matrix and its inverse exists.

Λc = CTSbYC

Ωc = CTSwYC (3.9)

The Fisher’s criterion JB, remains invariant under this linear transformation because,

tr(S−1
wZSbZ) = tr

[(
CTSwYC

)−1(CTSbYB
)]

= tr
(
C−1S−1

wY
(
CT)−1CTSbYC

)
= tr

(
S−1

wYSbYCC−1)
= tr

(
S−1

wYSbY
)

(3.10)

Considering Equation 3.9, the Equation 3.8 can be rewritten as follows,

(S−1
wXSbX )B = B(CΛcC−1) (3.11)
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Reformulation of Equation 3.11 by using a minor matrix operation gives,

(S−1
wXSbX )BC = BCΛc (3.12)

which means that Λc contains d eigenvalues of S−1
wXSbX and BC corresponds to c eigenvectors.

The trace of a matrix equals to the summation of its eigenvalues,

JB = tr(S−1
wYSbY ) = λ1 + · · ·+ λc (3.13)

and hence, JB can be maximized by selecting the largest c eigenvalues corresponding to c

eigenvectors of S−1
wBSbB. This proves that, mapping of the set X into the c eigenvectors of

S−1
wBSbB, forms a c-dimensional subspace (Y) spanned by these c eigenvectors. The Fisher’s

criterion JB also equals the summation of c largest eigenvalues. According to Equation 3.10,

this criterion is invariable to the selection of the coordinate system in the mapped subspace.

3.2 Fisher Discrimination for Dimension Expansion

Suppose that the set SB = {SwB, SbB} contains non-zero scattering matrices, that both of them

cannot be identity matrix, at the same time. Otherwise, the permutation of trace operator in

Equation 3.1, implies infinite valid orthogonal solutions. By applying cyclic permutation and

imposing orthogonality through BTB = I, the JB becomes,

JB = tr
[(

BTSwBB
)−1(BTSbBB

)]
= tr

(
B−1S−1

wB
(
BT)−1BTSbBB

)
= tr

(
S−1

wBSbBBB−1)
= tr

(
S−1

wB SbB
)

(3.14)

For a dimension expansion regime, consider a projection matrix A ∈ Rd×c conditioned at

c > d. Then, it is required to define a new inter-class scattering SwA ∈ Rc×c, such that,

tr(SwB) = tr(SwA) (3.15)
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Note that in Equations 3.2, the summation is defined over all classes (j ∈ [1, c]) of the set

X . To satisfy Equation 3.15, SwA can be considered as a square matrix, of size c × c, such

that, all of its entries except the main diagonal ones, are set to zero. Hence, the jth diagonal

entry is defined as follows,

SwA(j, j) = tr
[

∑
xi∈Cj

(xi − µj)(xi − µj)
T
]
∀ j ∈ [1, c] (3.16)

From Equations 3.15 and the similarity invariance of the trace operator, SwB and SwA

are similar matrices (Horn and Johnson [2012]). This implies that, there should exist a

non-singular matrix Γw, such that,

SwB = Γ−1
w SwAΓw (3.17)

By minor matrix operations, Equation 3.17 can be formulated as,

ΓwSwB − SwAΓw = 0 (3.18)

which is a special case of the Sylvester equation (Lee and Vu [2011]) and can be solved for

Γw by either Kronecker tensor trick or using generalized eigen-decomposition. This is because

SwB and SwA are non-singular matrices. The closed form solution for Equation 3.18 is,

vec(Γw) = I⊗ (−SwA)− ST
wB ⊗ I (3.19)

where vec(.) is the vectorization operator and ⊗ is Kronecker product. With the same

reasoning, SbA can be defined as a square matrix, of size c× c, such that,

tr
(
SbB
)
= tr

(
SbA

)
(3.20)

and there should exist a non-singular matrix Γb which gives,

SbB = Γ−1
b SbAΓb (3.21)
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On the other hand, Equations 3.17 and 3.21 hold,

S−1
wBSbB =

(
Γ−1

w SwAΓw
)−1(

Γ−1
b SbAΓb

)
= Γ−1

w S−1
wAΓwΓ−1

b SbAΓb (3.22)

Due to the similarity invariance in Equations 3.15 and 3.20, the cyclic permutation of the

trace operator can be considered to set,

Γb = Γw (3.23)

As a result, Equation 3.21 implies SbA as,

SbA = ΓbSbBΓ−1
b (3.24)

Now, Equation 3.22 can be worked out by substitution of Γb with Γw (Equation 3.23)

S−1
wBSbB = Γ−1

w S−1
wA(I)SbAΓb

= Γ−1
w
(
S−1

wASbA
)
Γw (3.25)

This proves that S−1
wBSbB and S−1

wASbA are similar matrices, that gives,

tr
(
S−1

wBSbB
)
= tr

(
S−1

wASbA
)

(3.26)

Looking back at Equation 3.14, a new optimization problem can be formulated, based on

SwA and SbA as follows,

JA = tr
[(

ASwAAT)−1(ASbAAT)] (3.27)

Equation 3.27 inherits the discrimination power and orthogonality of Equation 3.1, but in

contrast, this is aligned with the number of classes (c) instead of the dimension of input (d).
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3.3 Distributed Fisher Discrimination

Suppose that a set of N objective functions J = {J1, . . . ,JN} are optimized to map an

input set X = {X1, . . . , XN} through a projection set A = {A1, . . . , AN} into an output set

Y = {Y1, . . . , YN}. This holds Yk = XkAk and each Fisher’s criterion Jk will get maximized.

The aim is to prove that concatenation of all entries in the set Y is also well-discriminated,

based on Fisher’s criterion. This implies that Fisher discrimination can be successfully applied

for N partitions of data or N sets of features, in any distributed learning paradigms.

The scattering matrices of set Y can be calculated, using distributed projections

{Y1, . . . , YN} as follows (Valcarcel Macua et al. [2011]),

Sw =
1
N

N

∑
k=1

ȲkȲT
k

Sb =
c

∑
j=1

(Mj − M̄)(Mj − M̄)T (3.28)

such that Mj =
1
N ∑N

k=1 Mjk and M̄ = 1
N ∑N

k=1 M̄k. They are mean over the jth class and mean

over all representations of the set Y . It is known that the within-between class scatterings for

each Yk ∈ Y are defined as,

Swk =
c

∑
j=1

∑
yik∈Cj

(yik − µjk)(yik − µjk)
T

Sbk =
c

∑
j=1

(µjk − µ̄k)(µjk − µ̄k)
T (3.29)

where yik, c, µjk and µ̄k are; vectors in Yk, number of classes, mean over class Cj and mean

over all samples in Yk. These scatterings also minimize Jk as,

Jk = −log
(

tr(Swk)
[
tr(Sbk)

]−1
)

(3.30)
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Interchanging the order of the summations in Equation 3.28 and considering Equation 3.29,

the following holds,

Sw =
1
N

N

∑
k=1

Swk

Sb =
1
N

N

∑
k=1

Sbk (3.31)

Now, the tr(.) operator can be applied to the both sides of Equation 3.31 to give,

tr(Sw) =
N

∑
k=1

tr
(

Swk

N

)
tr(Sb) =

N

∑
k=1

tr
(

Sbk

N

)
(3.32)

The Arithmetic Mean-Geometric Mean inequality ([Steele, 2004]) implies that,

N

∑
k=1

tr
(

Swk

N

)
>

[ N

∏
k=1

tr(Swk)

] 1
N

N

∑
k=1

tr
(

Sbk

N

)
>

[ N

∏
k=1

tr(Sbk)

] 1
N

(3.33)

which results,

tr(Sw)

tr(Sb)
>

[ N

∏
k=1

tr(Swk)

tr(Sbk)

] 1
N

(3.34)

Applying negative logarithm to both sides of Equation 3.34 produces,

−log
(

tr(Sw)
[
tr(Sb)

]−1
)

6 − 1
N

N

∑
k=1

log
(

tr(Swk)
[
tr(Sbk)

]−1
)

(3.35)
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Considering Equation 3.30, this indicates that,

J 6
1
N

N

∑
k=1
Jk (3.36)

This means that the minimum separability of the set Y , has an upper bound which is equal

to the average of all minimum discriminations, imposed independently into {Y1, . . . , YN} by

{A1, . . . , AN}. In other words, solving N distributed local Fisher discrimination problems

{J1, . . . ,JN}, can generate a general solution for the global discrimination problem J over

the set X , when all N projections are concatenated. This finding leads to introduce some novel

distributed deep architectures in this thesis, trained by Deep Fisher Discriminant Learning.

3.4 Conclusion

In this chapter, the idea of Fisher discrimination was mathematically formulated. All the

entities and parameters of interest towards achieving optimal classification by maximizing

Fisher’s criterion, were also clarified. The key was to determine an associated transform matrix

to better distinguish the classes by maximizing the scattering between relative to that within

them. A novel dimension expansion method as a dual to conventional dimension reduction,

was proposed to further enhance the discriminative power of the classification by learning a

projection matrix to map into higher dimensions same as initial number of classes, inspired by

Fisher’s criterion. Built upon these developments, a distributed Fisher discrimination technique

was introduced to cope with a large number of classes. It was shown that the overall Fisher

discrimination problem was bounded by the sum of Fisher discriminations of each classes.

In other words, the global problem could be solved when each of the local discrimination

problems was solved independently.
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Chapter 4

Supervised Colour Transformation

Colour is a fundamental descriptor for numerous tasks in computer vision (Van De Sande

et al. [2010]). For these applications, colour space and descriptor are important (Chong et al.

[2008]) and hence, selection of the proper colour transformation, is critical to achieve high

performances (Strutz [2012]). For example, texture and complex shapes are better handled by

RGB colour space (Hu et al. [2011b]), while CIE, LUV or Lab spaces (Wyszecki and Stiles

[1982]) are often used for segmentation (Meyer and Greenberg [1980]).

The challenge of semantic segmentation has generally been addressed by solving a

pixelwise classification problem. The aim is to predict the corresponding class of each

pixel in a scene, by assigning a predefined label. The approach is to propose a supervised

colour transformation. Almost all colour transformations, in the literature and standards,

are derived by perceptual criteria rather than image information. Therefore, the proposed

supervised colour transformation is a novel approach to find a new colour space, based on

class information, for the application at hand. This transformation is computed via supervised

learning, and is employed as a general preprocessing step. For the purpose of semantic

segmentation, it can be implemented before feature extraction, in a standard pipeline of

pixelwise classification.

For implementation, class information in the dataset is employed to project the initial

colour space to a new space, spanned by the number of classes (dimension expansion). This

allows for the maximum pairwise distances between classes and the minimum scattering within

each class. A subspace projection is deployed to return back to a new colour space with the

same dimension as the primary colour space (dimension reduction). It also preserves the class

separability, imposed by the first projection.

29
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This projection-backprojection is the backbone of the supervised colour transformation. It

is learned from the distribution of data and classes in the dataset (projection). It is also exposed

the acquired distinction in the form of another colour space (backprojection). For the sake of

projection, FDA is reformulated (Section 3.2), to address the mapping from a low-dimensional

space (colour) to a high-dimensional space (class). For the backprojection, metric MDS is

used, which preserves geodesic distances between the classes in the high-dimensional space

(class), while mapping back to another low-dimensional space (colour).

4.1 Method

To achieve better performance on pixelwise classification, the Fisher discrimination is utilized

to map a primary colour space into a target colour space. The latter has the same dimension

as the former, but represents higher class separability. This transformation consists of a

projection from primary colour space to a space, spanned by the number of classes (dimension

expansion), followed by a backprojection from this space to the target colour space (dimension

reduction). Finally, an anisotropic scalings-translations is applied to fit the target colour cube

in the acceptable standard range of the primary colour space.

The lack of between-class scattering specificity (Loog et al. [2001]), is compounded by

the burden of dimensionality. To deal with the high-dimensional data, a number of approaches

have been proposed. These are independence rule (Bickel and Levina [2004]), feature annealed

independence rule (Fan and Fan [2008]), and NSC classifier (Tibshirani et al. [2002]).

Revisiting classical FDA, the proposed projection aims to map the primary colour

channels to a higher-dimensional class space. This is in contrast with approaches, such

as, LDA (McLachlan [2004]), where class-specific covariance is used to define within-class

scattering, while between-class scatter is considered to be uniform for distinct classes. Then,

the backprojection tries to map the high-dimensional class space into the low-dimensional

target space, using MDS to preserve the distances imposed by the above projection. The

result is a highly distinct colour representation, that benefits the feature extraction process

in classification pipeline.
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For evaluation purpose, several experiments are conducted on two semantic

segmentation algorithms and two datasets, which are both publicly available. First,

TextonBoost (Krähenbühl and Koltun [2012]) is employed on MSRC-21 dataset (Shotton et al.

[2009]). This uses colour, histogram of oriented gradients (HOG), and pixel location features.

Second, Darwin (Gould [2012]) is deployed on SBD dataset (Gould et al. [2009]), that employs

RGB colour of the pixel, dense HOG, LBP-like features, and averages over image rows and

columns. The supervised colour transformation is applied to preprocess images, feeding a

semantic segmentation process. The outcomes show that the proposed approach consistently

improves the overall and average precisions of both, TextonBoost and Darwin algorithms for

pixelwise semantic segmentation.

4.2 Formulation

In order to project the primary colour space to the class space (dimension expansion), the

Fisher’s criterion is minimized and an orthogonality constraint is imposed to compute the

projection matrix. Then, a subspace mapping matrix is computed, which backprojects the

class space into the target space (dimension reduction).

4.2.1 Projection for Dimension Expansion

Suppose that an input X ∈ Rn×d consists of n pixels, each with d colour components. This is

presented to a projection matrix A ∈ Rd×c which maps it into P = XA where P ∈ Rn×c.

Here, c is the number of semantic classes in the X , such that, c > d. To figure out the

projection matrix A, the Fisher’s criterion (Bishop [2006]), i.e. the ratio of inter-intra class

scatterings of set SA = {SwA, SbA} is minimized by solving,

arg min
AAT=I

H(A) = tr
(
ASwAAT)[tr(ASbAAT)]−1 (4.1)

Here, tr(.) is the trace operator and I indicates the identity matrix. This equation makes

the highest possible separability among classes, whilst the constraint term, AAT = I, imposes

orthogonality into the projection matrix A.
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For consistency of dimensionality in matrix operations of Equation 4.1, the scattering set

SA should belong to Rc×c but, classical definitions of scattering implies SA ∈ Rd×d because,

it is currently aligned with the depth of X . It is not possible to employ the linear discriminant

analysis (Fukunaga [1990]) to solve Equation 4.1, because this is no longer a dimension

reduction problem. In contrast, this optimization problem tries to increase the dimension of

input (d) by projecting to a higher dimension (c), where c > d.

The solution for this inconsistency is redefinition of the scattering set SA based on the

number of classes (c) rather than the dimension of input (d). Starting from a scattering set

SB = {SwB, SbB} which SB ∈ Rd×d, within and between-class scatterings are,

SwB =
c

∑
j=1

∑
xi∈Cj

(xi − µj)(xi − µj)
T (4.2)

SbB =
c

∑
j=1

(µj − µ̄)(µj − µ̄)T (4.3)

where xi, c, µj and µ̄ are the input samples, number of classes, mean over class Cj and mean

over X , respectively. Now, the new scattering set SA ∈ Rc×c can be defined. Assume SwA as

a square matrix, of size c× c, such that all of its entries, except main diagonal ones, are set to

zero. If the jth entry is formulated as,

SwA(j, j) = tr
[

∑
xi∈Cj

(xi − µj)(xi − µj)
T
]
∀ j ∈ [1, c] (4.4)

then, a non-singular matrix Γw is available to satisfy the following equation,

vec(Γw) = I⊗ (−SwA)− ST
wB ⊗ I (4.5)

which vec(.) is a vectorization operator and ⊗ is Kronecker product.

Equation 4.5 is a closed-form formulation of Sylvester equation (Lee and Vu [2011]) for

Γw, that can be solved by either Kronecker tensor trick or generalized eigen decomposition.

Setting Γb = Γw implies that,

SbA = ΓbSbBΓ−1
b (4.6)
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Algorithm 1 Supervised Projection

Input: input X ∈ Rn×d with n pixels of depth d
Output: optimal projection matrix A ∈ Rd×c

1: Compute SwA (Equation 4.4) and SbA (Equation 4.6)
2: Set initialization point A(0) as c largest eigenvalues of S−1

wASbA
3: Solve Equation 4.1 by nonlinear least-squares minimization algorithm

It is shown that, the solution can be retrieved by set of eigenvectors corresponding to the

largest c eigenvalues of S−1
wASbA (Section 3.2). Although this solution can be considered

as a suboptimal projection matrix, it is only employed as an initialization point A(0) to

solve Equation 4.1 by a nonlinear least-squares optimization method. In general, Fisher’s

criterion is in form of trace-of-quotient, which can be solved by a generalized eigenvalue

method (Bishop [2006]), but Equation 4.1 is arranged as quotient-of-trace, that requires a

different solution (Cunningham and Ghahramani [2015]).

With the aid of the information described above, and the Matlab optimization

toolbox (Coleman and Li [1996]), least-squares minimization with trust-region-reflective is

used to solve Equation 4.1. Algorithm 1 summarizes the computing of projection matrix A.

4.2.2 Backprojection for Dimension Reduction

The backprojection preserves pairwise cluster distances of the class space (P = XA), derived

from the learned projection matrix A. This naturally leads to application of linear and

nonlinear embedding techniques of dimensionality reduction, that attempt to preserve global

or local properties of the original data, in low-dimensional representations. Metric MDS is

the subspace mapping algorithm of choice for this end, because it has the capacity to preserve

pairwise distances in the class space, and to employ a wide variety of loss functions. In this

situation, the stress function is employed to measure the error between the pairwise distances.

To go further, the backprojection cost function Q(B) becomes,

Q(B) = − ∑
xi∈X

(
||P||2 − ||PB||2

)2

(4.7)

where || · || is the vector norm and Y = PB is the target space. Here, the terms ||P|| and

||PB|| are the Euclidean distances in the class and target spaces.
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Figure 4.1: Standard RGB and transformed colour cubes for MSRC-21 and SBD datasets. The
standard colour spectrum is mapped differently, according to the specification of the datasets
under study. Since the transformed cubes do not comply with the typical ranges of a standard
colour space, they should be scaled and translated by an anisotropic transformation.

As a result, the separation between pixel pairs belonging to different classes, is maximized

by the projection matrix A and hence, the backprojection matrix B is expected to preserve these

distances. Moreover, the minimization of Q(B) can be performed, using various methods,

such as, eigen-decomposition, or pseudo-Newton minimization, or conjugate gradient. In this

instance, the conjugate gradient method is employed.

4.2.3 Anisotropic Scaling-Translation

The proposed supervised colour transformation, probably generates out-of-range values for

Y as the target colour space (for example negative for the primary RGB colour space).

To accommodate the requirements of primary colour spaces (RGB, LUV, Lab, etc.), the

transformed colour cubes are scale-translated by,

Y∗ = YS + T (4.8)

where S and T are anisotropic scaling and translation matrices. This is a straightforward

scaling-translation operation, in the transformed target space. Further, these matrices are

computed by the deploying of vertices in the colour cubes.
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This is done by solving a linear equation, where six vertices are used to obtain six degrees

of freedom. The degrees of freedom comprise three diagonal elements of each of the above

two matrices. Figure 4.1 shows the transformed colour cubes for MSRC-21 and SBD datasets.

It can be seen that, they do not comply with the standards of RGB as the primary colour space,

because they show completely different colour settings, such as, negative values, learned from

the experimental datasets.

4.3 Experiments

To conduct experiments on semantic segmentation, a pixelwise classification pipeline is

considered. This employs the proposed colour transformation as a preprocessing step, such

that, a raw input image is fed in, and the colour-transformed output goes to a pixelwise

classifier. The experimental setup covers various classifiers and number of classes.

For the first experiment, TextonBoost framework (Krähenbühl and Koltun [2012]) is used

to classify MSRC-21 dataset (Shotton et al. [2009]). This experiment provides the unary

potentials for each class as the output of classification. The second experiment employs Darwin

implementation (Gould [2012]) for Stanford Background Dataset (SBD) (Gould et al. [2009]),

and delivers both unary and pairwise potentials.

The whole training set is used to learn the proposed supervised colour transformation by

Algorithm 1. To apply MDS for the backprojection, Markov Chain Monte Carlo (MCMC)

method is employed to subsample a balanced distribution of data among classes and then, to

minimize Equation 4.7. This is finally followed by the anisotropic scaling-translation to form

the target colour space. For comparison with other standard colour spaces, the Lab colour space

is taken as the baseline, since it is employed by both TextonBoost and Darwin frameworks.

The other colour spaces are YCrCb, HSL, LUV (Wyszecki and Stiles [1982]),

I1I2I3 (Geusebroek et al. [2001]), and O1O2O3 (Van De Sande et al. [2010]). Since the

above classifiers work on the luminance channel, I1 from I1I2I3 and O3 from O1O2O3

canonical colour spaces, are deployed for the sake of comparison. The following subspace

mapping methods: Heteroscedastic Discriminant Analysis (HDA) (Loog et al. [2001]);

Maximum Margin Criterion (MMC); Singular Value Decomposition (SVD); and Kernel

Principal Component Analysis (KPCA), are used as alternatives to MDS.
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4.3.1 Datasets

The MSRC-21 dataset (Shotton et al. [2009]), consists of 591 colour images, of size 320× 213

pixels, with corresponding ground-truth segmentation for 21 object classes. The evaluation

protocol considers 276 images for training and 256 images for test (Krähenbühl and Koltun

[2012]). The SBD (Gould et al. [2009]), includes 715 colour images, of size 320× 240 pixels,

with ground-truth segmentation over 8 classes. A 5-fold cross validation is used with 572

images for the training, and 143 images for the test (Gould et al. [2009]). The above protocols

split the datasets into predefined training-test sets.

4.3.2 Results & Discussion

The experimental outcomes are computed by comparing the outputs of classifiers and

ground-truths; and are expressed as global and average precisions. The global accuracy is

defined as the ratio of, correctly classified pixels, to the total number of pixels in the test set.

On the other hand, average precision is calculated as the average of per-class accuracies, which

are the ratio of, correctly classified pixels, to the total number of pixels in the same class.

Figure 4.2 illustrates the original, ground-truth, and colour-transformed images for

MSRC-21 dataset. Tables 4.1, 4.2 and 4.3 report the quantitative results for MSRC-21

dataset on the TextonBoost framework and confirm that, the proposed colour transformation

consistently outperforms other alternative subspace mappings, and colour spaces, with respect

to the baseline. It is worth mentioning, that due to the fine tuning of parameters, preprocessing

of images, or randomization functions, the accuracy of the TextonBoost implementation on

different platforms is not consistent with that reported (Krähenbühl and Koltun [2012]).

Figure 4.3 shows original, correspondent segmentation, and the colour transformed

samples. Table 4.4 presents per-class performances for Darwin. Tables 4.5 and 4.6 compare

the results for different subspace mappings and colour transformations. It is clear that, the

proposed colour transformation consistently improves both unary and pairwise classification

accuracies, and outperforms other alternatives, including the baseline.

In summary, the class-driven colour transformation improves the performance of semantic

segmentation for different datasets and frameworks; it outperforms other subspace mappings

and standard colour transformations; and it is also consistent across both implementations.
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Baseline 68 98 88 85 76 92 86 68 84 77 87 86 57 45 92 60 87 74 36 75 22 73.9 82.0
MMC 72 98 90 86 81 94 83 72 87 84 89 93 66 45 97 68 88 72 42 80 21 76.5 84.1
HDA 73 98 91 85 82 92 81 71 87 77 88 91 64 48 93 68 89 72 41 81 24 76.0 83.9
SVD 71 98 91 87 81 95 82 70 87 81 89 89 70 48 93 65 88 73 37 80 30 76.4 84.0

KPCA 72 98 89 85 85 94 86 70 87 82 88 90 66 53 96 56 88 78 38 80 24 76.3 83.9
Proposed 70 98 90 86 83 94 86 74 89 81 87 92 63 45 96 65 88 72 42 84 27 76.8 84.2

Table 4.1: Per-class accuracies for TextonBoost framework on MSRC-21 dataset. The
combination of the projection with any of the backprojection schemes, outperforms the
baseline, but metric MDS (Proposed) produces the highest precision.

Mapping
Unary Pairwise

Average Global Average Global
Baseline 67.1 78.9 70.2 82.8
MMC 68.1 78.5 71.3 82.7
HDA 67.4 77.9 70.8 82.2
SVD 67.3 79.8 69.1 83.5

KPCA 68.3 79.2 71.9 83.4
Proposed 68.9 80.0 72.1 84.0

Table 4.2: Precision of different subspace mappings for Darwin framework on MSRC-21
dataset. With the exception of KPCA and MDS (Proposed), other subspace mappings degrade
the baseline performance with slight margins on both of the unary and pairwise accuracies.

Transformation
Unary Pairwise

Average Global Average Global
Baseline 67.1 78.9 70.2 82.8
YCrCb 65.4 77.8 69.5 81.8

HSL 65.2 77.0 70.3 82.1
Luv 65.9 78.1 70.3 82.1

I1I2I3 62.6 75.2 69.6 81.3
O1O2O3 62.3 75.1 68.9 81.2
Proposed 68.9 80.0 72.1 84.0

Table 4.3: Precision of different colour spaces for Darwin framework on MSRC-21 dataset.
The baseline outperforms all standard colour spaces. However, the proposed colour
transformation improves the accuracy, as it learns from data and class distributions.
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Baseline 86 64 89 65 65 76 03 60 63.5 74.0
MMC 86 68 90 72 62 79 01 63 65.2 76.3
HDA 86 66 91 72 65 80 02 65 65.8 76.7
SVD 86 67 91 73 64 80 06 63 66.3 76.7

KPCA 86 68 91 73 65 80 03 61 65.9 76.6
Proposed 86 68 90 68 67 79 09 65 66.5 76.8

Table 4.4: Per-class accuracies for TextonBoost framework on SBD dataset. All the subspace
mappings outperform the baseline, and MDS (Proposed) gives the best accuracy.

Mapping
Unary Pairwise

Average Global Average Global
Baseline 68.3 78.5 70.2 81.5
MMC 69.6 79.9 71.7 82.9
HDA 68.9 79.3 71.2 82.4
SVD 69.2 79.8 70.9 82.8

KPCA 68.5 78.8 70.7 82.0
Proposed 70.4 81.4 72.5 84.2

Table 4.5: Results of different subspace mappings for Darwin framework on SBD dataset.
Both unary and pairwise precisions outperform the baselines for all the subspace mappings.
MDS (Proposed) shows the best performance.

Transformation
Unary Pairwise

Average Global Average Global
Baseline 68.3 78.5 70.2 81.5
YCrCb 68.7 77.1 70.7 80.2

HSL 68.0 76.9 70.0 80.1
Luv 68.3 76.9 70.5 80.1

I1I2I3 67.1 75.9 68.6 78.7
O1O2O3 66.7 75.9 68.5 79.0
Proposed 70.4 81.4 72.5 84.2

Table 4.6: Results of different colour transformations for Darwin framework on SBD dataset.
Only the YCrCb colour space shows slightly better unary and pairwise accuracies, when
compared with the baseline. The proposed colour transformation gives the best results.
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Figure 4.2: Sample images from the MSRC-21 dataset. Each panel shows raw RGB,
corresponding segmentation, and transformed images.

Figure 4.3: Sample images from the SBD dataset. Each panel shows raw RGB, corresponding
segmentation, and transformed images.
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4.4 Conclusion

In this chapter, the supervised colour transformation jointly utilized the colour transformation

and supervised learning to accomplish semantic segmentation, i.e. pixelwise prediction of

labels in a scene. This applied Fisher discrimination to expand the primary colour space into a

high-dimensional space, with minimum distances among within-class pixels and maximum

differences among between-class ones. After dimension expansion, a backprojection was

proposed to reduce this high-dimensional space by metric MDS, which gave a new colour space

with the same dimension as the primary space, while preserving the geodesics distances among

classes in the high-dimensional space. This was also a departure from conventional linear

dimension reduction, elsewhere in the literature. Finally, an anisotropic scaling-translation was

employed to convert this colour space into a standard colour space. Experiments on two public

databases, six canonical colour spaces, and three different subspace mappings confirmed that

the proposed method outperformed other semantic segmentation algorithms.
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Chapter 5

Fisher Convolutional Neural Network

Texture understanding has always been a matter of interest to computer vision community.

Texture is an important visual clue for classification and segmentation tasks, in various scene

understanding challenges. A variety of methods are available for different tasks in texture

understanding, for example, material recognition (Timofte and Van Gool [2012], Hu et al.

[2011a]), texture perception (Cimpoi et al. [2015b]), and texture synthesis (Liu et al. [2012]).

The emergence of deep convolutional neural networks, has led to considerable

improvements in image classification, detection and segmentation (Krizhevsky et al. [2012]),

and particularly in texture recognition (Simonyan and Zisserman [2014]). Recently, deep

filter banks proposed a new type of texture descriptor, computed by Fisher vector pooling

of the convolutional networks. It resulted in significant improvements in the accuracy and

performance of texture (Cimpoi et al. [2015a]), material (Badri et al. [2014]), and scene

recognition (Oquab et al. [2014]).

5.1 Method

This chapter introduces a novel deep convolutional architecture, based on Fisher

discrimination. It is specifically designed to learn scales, orientations and resolutions of texture

filters. This network trains filter parameters, rather than the whole filters themselves, and gives

a set of texture filters, which capture quality convolutional features in several layers of variable

depths. This keeps the number of learning parameters, considerably lower than the classic

networks. It is also able to learn numbers of texture filters independently and produce an

ensemble of convolutional features, for the texture recognition.
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The Fisher convolutional network can be trained in variable depth of feedforward neural

layers, while the depth of layers for each texture filter, depends on its power to impose

higher distinction into the convolutional features. This prevents redundant training for the

texture filters, which are not capable of creating distinctive features in the deeper layers. The

experiments show significant improvements in the precision for standard benchmarks.

5.2 Formulation

Assume a set of filters F = {F1, . . . , F|F |}, such that, every sample filter F ∈ F is

generated with a specific function f(.), using three parameters i.e. scale (s), orientation (o),

and resolution (r) as follows,

F = f(s, o, r) (5.1)

The functions of set {f1(.), . . . , f|F |(.)} are Gaussian or Laplacian of Gaussian (LoG).

They generates texture filters, of size r × r, to convolve with the input images, and extract

texture features. The goal is to learn a set of optimal parameters for each filters of the set F ,

such that, final ensemble of |F | convolutional features, improves the performance of texture

classification task.

As a general preprocessing step, a set of texture images I = {I1, . . . , I|I|} are converted

to standard CIE-Lab colour format and normalized to zero mean unit variance. This gives the

chance of deploying all information in luminance and chrominance channels, for the purpose

of texture understanding. The texture filter F, with a set of initial parameter Θ = {s, o, r}, is

convolved (∗) with all the images in set I , to obtain a set of filter outputs R as,

R(Θ) = I ∗ F = I ∗ f(Θ) (5.2)

Although it is possible to classify R directly, this can be projected to a space spanned by the

number of classes in I . It reflects the notion of texture classes, such that, separability between

them gets maximized, whilst scattering within them, becomes minimized. This projection is

presented as a matrix A ∈ Rd×c where d is the number of colour components for each pixel,

and c stands for the number of texture classes.
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The projection matrix A is multiplied by R to form a feature vector V, such that,

V(Θ) = R(Θ)A (5.3)

The filter output R and feature vector V, are nonlinearly related to the parameter set Θ

through f(Θ). This is in contrast with the notion of F, which can be directly calculated by f(.)

through plugging the parameters into the generator function.

After projection, the resulting feature vector V is employed to learn a K-Nearest Neighbour

classifier (KNN), which is then evaluated by a validation set. It yields a quantitative measure

of how each of the filter parameters of set Θ contribute to the texture recognition performance.

This recognition performance is maximized by updating these filter parameters. Here, every

performance measures, such as φ, derived by confusion matrix C of the KNN classifier, can be

minimized to update the filter parameters. For this optimization problem, a convex objective

function is defined as follows,

P(Θ) = −log(φ) (5.4)

This is a nonlinear function, with respect to the parameter set Θ and feature vector V. The

minimization of P by a nonlinear optimization technique, gives the optimal set of parameters

Θ∗. This generates the optimized texture filter F∗, that lets to compute the optimal projection

matrix A∗. Figure 5.1 illustrates a learning neuron of the Fisher convolutional neural network.

This process begins by the initial set of parameters Θ and Equation 5.2 is employed to minimize

Equation 5.4. After ith iteration, it gives Θ(i) to calculate F(i). The feature vector V(i) is then

classified and the confusion matrix C(i) is drawn. If the recognition performance improves well

and passes a predefined threshold, the optimal filter F∗ is set to F(i) and an activation function

is applied to feed the input of the next neuron. Otherwise, the ith set of filter parameters, is

considered as the initial point to run the (i + 1)th iteration, that generates the texture filter

F(i+1) following the same procedure.

Recent developments in deep learning, prove the likelihood of drawing better high-order

features, by deep multilayer neural networks. Hence, the above process can move forward in

consecutive convolutional layers, applying Fisher discrimination in a layer-wise manner. This

continues until no meaningful improvement is gained in the performance.
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Figure 5.1: Learning neuron of Fisher convolutional neural network. The input is convolved
by the initial filter, is projected to a space spanned by the number of input classes, and
then is classified. This process continues by updating the filter parameters until no further
improvement in classification precision can be made. The convolutional features (response of
filters with optimized parameters) pass through an activation function to feed the next neuron.

Following the successful practice of applying activation functions for transferring of

features between deep layers, g(x) = x
1+|x| (Softsign) is employed in the output of each

neurons. This activation is robust to the initialization and shows gentle nonlinearity (Glorot and

Bengio [2010]). It also preserves separability imposed by the projection, and avoids vanishing

of high-order gradients.

In the Fisher convolutional neural network, each texture filter of the set F is trained

separately and hence, |F | set of optimal parameters are produced. For texture recognition, the

above optimal filters are applied on the test images, to produce an ensemble of convolutional

features. Following the successful practice of deep filter banks (Cimpoi et al. [2015a]),

dictionary learning is employed to feed a SVM to classify the dictionary of codes. Figure 5.2

depicts an example of Fisher convolutional network.

5.2.1 Projection

Formerly, a projection matrix A ∈ Rd×c is defined, that maps d colour components into a

space corresponding to the c > d texture classes. Suppose that R contains the filter responses

of n pixels in c texture classes of the set I .



§5.2 Formulation 47

Figure 5.2: Fisher convolutional neural network. Each convolutional filters is trained by a
specific layer, consisting of several learning neurons. The depths of distributed layers, varies
with respect to the capability of their corresponding filters to extract more distinct features. As
a result, the final ensemble of features, has great discrepancy among classes of the input. This
leads to better classification performance by any classifier of choice.

Inspired by the concept of Fisher’s criterion (Bishop [2006]), the aim is to minimize the

ratio of inter-intra class scatterings of set SA = {SwA, SbA} by figuring out A, such that,

arg min
AAT=I

H(A) = tr
[
(ASwAAT)(ASbAAT)−1

]
(5.5)

Here, tr(.) is the trace operator, I is the identity matrix, and AAT = I, imposes

orthogonality into the projection matrix A.

Since the CIE-Lab colour space is used, the filter outputs R belong to Rn×d where d = 3.

It is also required that A belongs to Rd×c to hold V in Rn×c and make Equation 5.3 consistent

in its dimensions. This also forces the set SA to stand in Rc×c for making Equation 5.5,

dimensionally consistent.
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This means that, it is impossible to employ classic discriminant analysis (Bishop [2006]) to

solve Equation 5.5, because c > d and hence, this is no longer a dimension reduction problem.

Note that the dimension of target space V, is higher than the original space R, for all available

texture datasets. To handle this issue, the scattering set SA is redefined with respect to the

dimensionality of target space (c) rather than the primary CIE-Lab colour space (d).

For SwA, consider a square matrix, of size c × c, with zero in all entries except main

diagonal. The jth entry of SwA is calculated as follows,

SwA(j, j) = tr
[
(xj − µj)(xj − µj)

T
]
∀ j ∈ [1, c] (5.6)

The xj and µj are convolutional features and average vectors over jth texture class of R.

The SbA can also be defined as another square matrix, of size c× c, that all of its entries are

set to zero, except main diagonals,

SbA(j, j) = tr
[
(µj − µ̄)(µj − µ̄)T

]
∀ j ∈ [1, c] (5.7)

where µ̄ is the average vector over all texture classes. This is aligned with the objective function

in Equation 5.5 which tries to capture the separation power through trace operator.

To solve Equation 5.5, Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck

and Teboulle [2009]), is employed, as a gradient descent method with proven fast convergence.

The optimization begins with random initialization of A(0) to determine the optimal projection

matrix A, for each texture filter of the bank F . For the purpose of implementation, UnLocBox

toolbox (Combettes and Pesquet [2011]), is utilized.

5.2.2 Optimization

After projecting the filter output R by the matrix A, to produce feature vector V, it is necessary

to deploy a proper optimization algorithm to minimize Equation 5.4 as follows,

argmin
Θ
P = −log

[
φ
(
V(Θ)

)]
(5.8)
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Here, φ is the performance measure derived by the confusion matrix C, generated by the

KNN classifier inside the neuron. Instead of solving P , its counterpart Q can be solved with

less efforts. Lets define Q as a least-squares minimization problem,

argmin
Θ
Q =

[
log
(
ρ(Θ)

)]2

+

[
log
(
η(Θ)

)]2

+

[
log
(
χ(Θ)

)]2

(5.9)

The real functions ρ, η and χ are global, average and recall precisions, derived from the

confusion matrix C. By definition, ρ is the proportion of the total number of predictions that

are correct, η is a measure of the accuracy provided that a specific class has been predicted,

and χ is a measure of the ability of a prediction model to select instances of a certain class

from a dataset (Sammut and Webb [2011]). In practice, negative logarithms of precisions, is

considered as auxiliary functions, which optimize P through minimizing of Q. The goal is to

maximize the classification performance by imposing symmetry to the confusion matrix C to

avoid biases towards majority or minority texture classes.

To solve the Equation 5.9, nonlinear least-squares minimization with

trust-region-reflective (Coleman and Li [1996]), is implemented by the built-in function

of Matlab optimization toolbox. As a rule of thumb, the number of neighbours in KNN

classifiers are set to the square root of feature vector length.

5.3 Experiments

For the experiments, three well-known texture filter banks (LM, MR and Schmid) are

employed. The Fisher convolutional neural network is employed to learn their optimal

parameters for five texture datasets (UIUC, KTH-TIPS2-a, KTH-TIPS2-b, FMD and DTD).

The code is embedded in Oxford Visual Geometry Group’s implementation and the mean

accuracy of recognition, averaged over standard number of splits, is reported according to a

standard evaluation protocol (Cimpoi et al. [2014a]).

This follows the well-known trend of computing local image descriptors and encoding

them into a visual dictionary. The current descriptors are 128-dimensional dense SIFT features

(DSIFT) computed for bins, of size 6× 6 pixels, at scales {1,
√

2
2 , 1

2 ,
√

2
4 , 1

4}.
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The descriptors are soft quantized by Gaussian Mixture Model (GMM) and normalized

to generate Improved Fisher Vectors (IFV). After normalization, a linear SVM classifier is

trained, and the validation set is used to find its regularization parameter. In each experiments,

other deep descriptors are replaced with DSIFT in the standard pipeline of texture recognition.

5.3.1 Filter Banks

The evaluations consider three filter banks, each consisting of 99 filters, of size 49 × 49

pixels, divided into 10 categories, according to their generation functions. The first bank is

Leung-Malik (LM) (Leung and Malik [2001]), including 36 first and second derivatives of the

Gaussian filters, at three scales {
√

2, 2, 2
√

2} and six orientations {π
6 , π

3 . . . , π}, eight LoG,

and four Gaussian filters at scales {
√

2, 2, 2
√

2, 4}. The second bank is Maximum-Response

(MR) (Varma and Zisserman [2003]), consisting of 36 filters at three scales {1, 2, 4} and

six orientations added to two isotropic Gaussian and LoG filters. The third bank is Schmid

(S) (Schmid [2001]), containing 13 rotationally invariant filters with σ ∈ {2, 4, 6, 8, 10} and

τ ∈ {1, 2, 3, 4}.

5.3.2 Datasets

The UIUC texture database (Lazebnik et al. [2005]), contains 1000 images (40 samples,

25 classes) in grayscale format. KTH-TIPS2-a and KTH-TIPS2-b (Mallikarjuna et al.

[2006], Timofte and Van Gool [2012]), stand for Textures under varying Illumination, Pose

and Scale. The former uses only 72 images for 4 out of 44 samples, while the latter consists

of 4572 images (4 samples, 108 images per sample and 11 categories). The Flicker Material

Dataset (FMD) (Sharan et al. [2009]), includes 1000 samples (100 images per category, 10

categories), selected manually from Flickr (Sharan et al. [2009]). The Describable Texture

Dataset (DTD) (Cimpoi et al. [2014b]), contains 5640 annotated texture images, with one or

more adjectives from 47 English words (120 representative images per attribute), and 10 pre-set

splits into training-validation-test sets.
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 97.3±0.5
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 77.6±3.6
KTH-b 69.8±5.7 74.8±4.3 73.2±3.9 75.1±3.1
FMD 50.3±1.4 63.2±1.4 65.5±1.0 69.6±1.5
DTD 59.6±1.0 57.6±1.5 58.3±1.1 63.3±0.9

Table 5.1: Mean accuracy of texture recognition by dictionary learning for dense SIFT
(DSIFT), DeCAF(FC6), VGG-VD and Fisher convolutional features. It can be seen that,
the proposed Fisher convolutional features create better dictionaries by imposing higher
discrepancies among texture classes, to the advantage of the classifier.

5.3.3 Results & Discussion

Table 5.1 presents the performances in terms of mean accuracy for the texture recognition.

The results are reported to compare with recent state-of-the-arts in the literature (Cimpoi et al.

[2015a]). The first column represents precisions, coming from the dense SIFT (DSITF),

followed by DeCAF(FC6) (Donahue et al. [2013]), VGG-VD (Simonyan and Zisserman

[2014]), and the proposed Fisher convolutional features.

It is obvious that the Fisher convolutional features perform better than DSIFT on all the

datasets under examination. For FMD dataset, it shows a two-digit margin for precision

improvement. This effect is also observed for DeCAF and there are significant improvements

on FMD and DTD datasets. Compared to VGG-VD, outcomes are close with a small margin

on UIUC dataset and great improvements on the rest of experimental datasets.

Figure 5.3 illustrates the initial and corresponding learned filters. Some texture filters

remain unchanged, because their initial parameters are already optimum for the texture

recognition task. For other filters, either all or some of their parameters are updated, leading to

variations in their scales, rotations or resolutions. As a result, they represent greatly different

shapes, compared to the initial texture filters.
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Figure 5.3: Examples of (a) initial filters and their corresponding texture filters, learned for the
(b) UIUC; (c) KTH-TIPS2-a; (d) KTH-TIPS2-b; (e) FMD; (f) DTD datasets. The variations in
scales, orientations and resolutions of the trained filters are tailored to the datasets, that these
filters learn from. For directional filters, the orientations are prone to considerable change;
whereas, for rotational filters, resolutions are the main source of variations.
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5.4 Conclusion

In this chapter, an architecture incorporating Fisher discrimination with convolutional neural

network, was proposed to perform texture classification by searching for a set of filters which

yielded convolutional features with the best classification performances. Each filter was

determined by its scale, orientation and resolution. The Fisher discrimination was employed to

create highly separated features which were subsequently used to construct a KNN classifier,

that its performance was optimized in consequent iterations over above parameters. The

number of iterations with a filter formed a learning neuron, which its output passed through

an activation function and served as the input of next layer, to calculate high-order features.

Dictionary learning and SVM were deployed to classify the final set of features that in extensive

experiments, showed better classification performance over the recent baselines.
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Chapter 6

Fisher Convolutional Autoencoder

Learning of convolutional filters in deep neural networks, provides sparse representations for

the purpose of image recognition. Autoencoders are a family of powerful deep neural networks,

used to build scalable, generative models for automatic feature learning. They introduce a

powerful variation in the way that, hierarchical features are learned. An autoencoder is a neural

network, trained to prioritize useful aspects of the input data. Traditionally, autoencoders

were used for dimensionality reduction or feature learning, but recently, their theoretical

connections with latent variable models have brought them to the forefront of generative

modelling (Goodfellow et al. [2016b]).

A regularized autoencoder learns the most salient features of the data distribution by

limiting model capacity. To this end, this keeps the autoencoder shallow and the code

size small. The model has other properties, such as, sparsity, smallness of the derivative

of the representation, and robustness to noise or missing inputs. In contrast, a variational

autoencoder (Kingma et al. [2014]) and generative stochastic networks (Bengio et al. [2013]),

learn high-capacity and overcomplete encodings of the input, without regularization. Besides,

a convolutional autoencoder network is trained, using online gradient descent without

additional regularization terms, and is properly scaled to the high-dimensional inputs (Masci

et al. [2011]). Figure 6.1 shows the architecture of an overcomplete autoencoder.

6.1 Method

A Fisher convolutional autoencoder network is inspired by the stacked hierarchy of

autoencoders, and is able to learn parametric and separable texture filters, in a novel deep

architecture. Figure 6.2 represents the architecture of the Fisher convolutional autoencoder.

55
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Figure 6.1: Overcomplete autoencoder. This is a stacked regularized autoencoder, trying to
reconstruct noisy inputs (X) based on stacking layers, trained locally to remove noise from the
corrupted versions of the input, to form the output (Y).

This overcomplete autoencoder, employs the Fisher discrimination to impose the highest

possible distinction among texture classes. It does so while holding the minimum separation

within each classes of the dataset under study. A network of Fisher convolutional autoencoders,

learns banks of texture filters to makes an ensemble of deep convolutional features, which

benefits from higher separability, and enables better classification. This network automatically

adjusts the depth of each stack with respect to the capability of its corresponding texture filter,

upon extracting high distinction features. Each stack of the Fisher convolutional autoencoders,

is trained for a specific texture filter, using distributed Fisher discrimination (Section 3.3).

Figure 6.3 depicts a Fisher convolutional autoencoder network. The experiments are

conducted on several publicly available datasets, which vary in the number of classes and

the quality of texture samples, using a standard implementation. The results confirm the

supremacy of this deep architecture to improve the precision of texture classification.

6.2 Formulation

The Fisher convolutional autoencoder operates by a projection-backprojection formulation,

derived by Fisher discrimination. This formulation replaces coding-decoding part of a

conventional overcomplete autoencoder. Instead of reconstructing the noisy input, it aims to

impose the highest class separability in the output, with respect to the input.
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Figure 6.2: Fisher convolutional autoencoder. This consists of a projection to higher
dimensions, followed by a convolution and then, a backprojection to the primary dimensions.
It aims to expose better separation between classes of output (Y) than input (X).

For projection, a mapping matrix A ∈ Rd×c minimizes the ratio of between-within class

scatterings of set SA = {SwA, SbA}, by imposing orthogonality,

argmin
A
Q(A) = tr(ASwAAT)

[
tr(ASbAAT)

]−1
+ λ1‖I−AAT‖2 (6.1)

The first term of Q(A) corresponds to the Fisher’s criterion (quotient of trace) which

aims to make the highest possible separability among texture classes. The second term is a

regularizer, imposing orthogonality into the projection matrix A. Looking back at Section 3.2,

one can see that the set of eigenvectors corresponding to the largest c eigenvalues of S−1
wASbA

is a solution for this equation. Here, it is taken as an initial projection matrix A(0) to

solve Equation 6.1. This is due to the fact that, the classic fisher criterion is defined as

trace-of-quotient, which can be solved by generalized eigenvalue method but,Q(A) is formed

as the quotient-of-trace (Cunningham and Ghahramani [2015]).

Following the same practice as projection, the minimization problem for a backprojection

matrix B ∈ Rc×d is defined by,

argmin
B
P(B) = tr

(
BTSwBB

)[
tr
(
BTSbBB

)]−1
+ λ2‖I− BTB‖2 (6.2)

where B(0) is set to the largest d eigenvalues of S−1
wBSbB. Closed form formulations of gradients

for Equations 6.1 and 6.2 can be worked out as follows.
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Figure 6.3: Fisher convolutional autoencoder network. This includes |F| stacks with maximum
N Fisher convolutional autoencoders, arranged at different depths, depending upon each filter’s
ability to better distinguish between classes. Dictionary learning is employed for each of the
parallel stacks, and dictionary codes are ensembled to feed a classifier of choice.

Suppose that Q(A) is composed of Q1(A) and Q2(A), such that,

Q1(A) = tr
(
ASwAAT)[tr(ASbAAT)]−1 (6.3)

Q2(A) = ‖I−A AT‖2 (6.4)

According to matrix calculus (Petersen et al. [2008]),

∂tr
(
ASwAAT)

∂A
=
(
ST

wA + SwA
)
AT (6.5)

∂tr
(
ASbAAT)

∂A
=
(
ST

bA + SbA
)
AT (6.6)
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Algorithm 2 Supervised Projection

Input: X ∈ Rn×d (n pixels of depth d)
Output: projection matrix A ∈ Rd×c

for k = 1 to |F | do
1: Compute SwA (Equation 3.16), Γw (Equation 3.19)
2: Calculate SbA (Equation 3.24)
3: Set A(0) as c largest eigenvalues of S−1

wASbA
4: Solve Equation 6.1 by using Equation 6.10

end for

and hence,

∂Q1

∂A
=

tr
(
ASwAAT)[

tr
(
ASbAAT

)]2

(
ST

bA + SbA
)
AT

− 1
tr
(
ASbAAT

) (ST
wA + SwA

)
AT (6.7)

On the other hand,

∂Q2

∂A
=

(
∂
(
I−AAT)

∂A

)
I−AAT

‖I−AAT‖2
(6.8)

which gives,

∂Q2

∂A
=
−2AT(I−AAT)
‖I−AAT‖2

(6.9)

and finally,

∂Q
∂A

=
tr
(
ASwAAT)[

tr
(
ASbAAT

)]2

(
ST

bA + SbA
)
AT

− 1
tr
(
ASbAAT

) (ST
wA + SwA

)
AT

− 2λ1

‖I−AAT‖2
AT(I−AAT) (6.10)

Algorithm 2 summarizes the computing of A, through supervised projection.
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Algorithm 3 Supervised Backprojection
Input: Y = XA ∗ F ∈ Rn×c (n pixels of depth c)
Output: backprojection matrix B ∈ Rc×d

for k = 1 to |F | do
1: Compute SwB (Equation 3.2) and SbB (Equation 3.3)
2: Set B(0) as d largest eigenvalues of S−1

wBSbB
3: Solve Equation 6.2 by using Equation 6.11

end for

The backprojection algorithm is a subspace mapping, providing B ∈ Rc×d, to reduce the

dimension of convolutional features from c to the initial dimension d by,

∂P
∂B

=
tr
(
BTSwBB

)[
tr
(
BTSbBB

)]2

(
SbB + ST

bB
)
B

− 1
tr
(
BTSbBB

) (SwB + ST
wB
)
B

− 2λ2

‖I− BTB‖2
B
(
I− BTB

)
(6.11)

Algorithm 3 presents the computing of backprojection matrix B by supervised

backprojection. For implementation, FISTA (Beck and Teboulle [2009]) is employed.

6.3 Experiments

The proposed network is employed to learn scales, orientations and resolutions of three

well-known texture descriptors (LM, MR, Schmid) for five publicly-available texture datasets

(UIUC, KTH-TIPS2-a, KTH-TIPS2-b, FMD, DTD). The implementation is embedded in

the Oxford Visual Geometry Group’s platform for texture understanding (Cimpoi et al.

[2014b]). According to the evaluation protocols, mean accuracy of recognition, averaged

over standard number of splits, is reported for each experiments. These include dictionary

learning of features, generated by the Fisher convolutional autoencoder network (Fisher),

and the state-of-the-arts in literature, i.e. dense SIFT (DSIFT) (Chatfield et al. [2014],

DeCAF(FC6) (Donahue et al. [2013]), and VGG-VD (Simonyan and Zisserman [2014]).
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6.3.1 Parametric Texture Filters

Suppose a set of Gaussian or Laplacian of Gaussian (LoG) filters F = {F1, . . . , F|F |}. For

each individual filter F ∈ F , the input X is projected by the matrix A. This creates a latent

projected vector, that is convolved with the filter F to generate a latent convolutional feature

set. This set backprojects by matrix B to the output Y . The aim is to maximize separation, and

minimize scattering among texture classes.

The solution is a set of optimal filter parameters Θ∗ that finally, provides the optimal

texture filter F∗ for the convolutional autoencoder. In this instance, the Matlab optimization

toolbox (Coleman and Li [1996]), is used to implement the nonlinear least-squares

minimization with trust-region-reflective algorithm.

Table 6.1 presents results of texture classification experiments. It can be seen that the

performance of the Fisher convolutional autoencoder network (Fisher) outperforms on FMD

and KTH-TIPS2-a datasets. Results for VGG-VD is better than the proposed network on

KTH-TIPS2-b and DTD datasets, but on UIUC dataset, the proposed algorithm follows DSIFT.

This is due to the fact that, UIUC is a grayscale texture dataset and hence, the proposed

projection-backprojection paradigm cannot take advantage of orthogonality in the standard

colour spaces, to impose powerful separation among the texture classes.

Table 6.2 shows mean accuracy for the concatenation of the Fisher convolutional features,

with DeCAF deep descriptors. The model, pretrained on ImageNet (Donahue et al. [2013]),

is employed to compute DeCAF features for all datasets except DTD dataset, whose its

features are available on the web. The results (Fisher + DeCAF) are reported besides DSIFT

+ DeCAF (Cimpoi et al. [2014b]). It is obvious that the proposed network outperforms on all

datasets, with considerable improvements in the recognition performance.

Table 6.3 provides the outcomes of the same experiment for VGG-VD features, pretrained

on ImageNet (Simonyan and Zisserman [2014]). According to these results, the performances

of Fisher + VGG on all datasets, are improved against DSIFT + VGG (Cimpoi et al. [2015b]).
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 97.2±1.3
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 72.1±3.6
KTH-b 69.0±5.7 74.8±4.3 73.2±3.9 71.8±4.5
FMD 50.3±1.4 63.2±1.4 65.5±1.0 52.5±3.2
DTD 59.6±1.0 57.6±1.5 58.3±1.1 63.0±2.3

Table 6.1: Mean accuracy of dense SIFT (DSIFT), DeCAF(FC6), VGG-VD and the Fisher
convolutional autoencoder network, for parametric texture filters. With the exception of KTH
and FMD datasets, the proposed Fisher convolutional features provide the best results.

Dataset DeCAF DSIFT + DeCAF Fisher + DeCAF
UIUC 96.4±0.7 98.6±0.7 98.9±0.2
KTH-a 73.9±4.2 78.8±3.7 81.7±2.5
KTH-b 74.8±4.3 79.3±3.9 84.3±1.5
FMD 63.2±1.4 67.3±1.1 70.7±4.6
DTD 57.6±1.5 66.5±1.4 68.8±3.8

Table 6.2: Mean accuracy of the Fisher convolutional autoencoder network in concatenation
with DeCAF model (pretrained on ImageNet), for parametric texture filters. This combination
outperforms DeCAF and DSIFT + DeCAF features.

Dataset VGG DSIFT + VGG Fisher + VGG
UIUC 96.7±1.5 98.8±0.7 99.3±0.2
KTH-a 73.3±3.9 77.8±4.1 82.7±3.9
KTH-b 73.2±3.9 78.3±2.5 83.2±4.1
FMD 65.5±1.0 67.5±0.9 70.8±4.7
DTD 58.3±1.1 67.2±1.0 71.5±1.9

Table 6.3: Mean accuracy of the Fisher convolutional autoencoder network in concatenation
with VGG-VD model (pretrained on ImageNet), for parametric texture filters. The results are
better than VGG and DSIFT + VGG, in all the datasets.
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Dataset Others Fisher
UIUC 98.8±0.7 99.3±0.2
KTH-a 78.8±3.7 82.7±3.9
KTH-b 79.3±3.9 84.3±1.5
FMD 67.5±0.9 70.8±4.7
DTD 67.2±1.0 71.5±1.9

Table 6.4: The best mean accuracies of other methods (Others), in comparison with, the
Fisher convolutional autoencoder network, for parametric texture filters. The proposed Fisher
convolutional features outperform the best of the other approaches, with maximum margin on
KTH-b dataset, and minimum improvement on the UIUC dataset.

Table 6.4 gathers the top performances from the above experiments to make an overall

benchmark (Others vs. Fisher). It is worth mentioning that for KTH datasets, a combination

of the proposed Fisher convolutional and DeCAF features, gives better outcomes in contrast to

UIUC, FMD and DTD datasets, where VGG-VD features result in higher accuracies.

It appears that the reason for poor results on KTH dataset is due to the quality of

the texture images, which were captured under controlled lighting conditions and at fixed

distances (Mallikarjuna et al. [2006]). These generate more homogeneous features for each

classes of textures and hence, DeCAF performs better than VGG-VD due to its pretraining

specifications and deep architecture.

Tables 6.5, 6.6 and 6.7 present scales, orientations (in radiant) and resolutions (in pixel),

for texture filters {1, 19, 37, 38, 39} from LM bank, {1, 19, 37, 38} from MR bank and {1}

from Schmid bank. These are the first filters from each texture bank that share same

generation functions (Equation 5.1). These tables also show the evolution of parameters for

all the illustrated filters, compared to their initial parameters. The variations in scales are

considerable, whereas the resolutions correspond to the focus of the texture images.

Figure 6.4 provides some example illustrations of the initial and optimal texture filters for

all the datasets, under examination. Some filters seem to remain unchanged, because their

initial parameters are optimum for the texture recognition, on that specific dataset. Other

alterations in, either all or part of the parameters, reflects as variations in patterns of optimized

filters, compared to their initial correspondents.
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Dataset LM (1) LM (19) LM (37) LM (38) LM (39)
UIUC 2.61, 2.66, 17 1.41, 2.74, 17 3.99, 0, 49 1.41, 0, 09 4.25, 0, 09
KTH-a 1.41, 0.00, 49 1.41, 0.86, 35 1.97, 0, 43 2.00, 0, 35 5.70, 0, 35
KTH-b 1.41, 0.00, 09 1.41, 0.00, 09 1.56, 0, 09 3.21, 0, 29 4.24, 0, 49
FMD 1.41, 0.00, 49 1.99, 2.17, 23 3.99, 0, 49 1.42, 0, 49 4.24, 0, 43
DTD 1.41, 0.91, 49 2.31, 1.99, 23 3.99, 0, 49 1.41, 0, 49 4.24, 0, 49

Initials 1.41, 0.00, 49 1.41, 0.00, 49 1.41, 0, 49 1.41, 0, 49 4.24, 0, 49

Table 6.5: Examples of initial and optimal parameters (scale, orientation, and resolution) for
LM texture bank. The numbers in parentheses, show the index of filters inside the bank.
The greatest deviations from the initial parameters, come from filters, 37 for scale and 19 for
orientation & resolution.

Dataset MR (1) MR (19) MR (37) MR (38)
UIUC 1.00, 2.09, 23 3.51, 0.00, 49 10.79, 0, 17 09.00, 0, 09
KTH-a 1.00, 0.00, 49 1.82, 0.86, 35 10.00, 0, 49 10.00, 0, 49
KTH-b 3.12, 2.22, 49 3.39, 0.00, 49 09.18, 0, 49 09.87, 0, 49
FMD 1.00, 0.48, 43 2.01, 0.54, 17 09.00, 0, 09 09.01, 0, 49
DTD 1.59, 0.87, 29 1.02, 0.76, 49 11.00, 0, 49 10.84, 0, 23

Initials 1.00, 0.00, 49 1.00, 0.00, 49 10.00, 0, 49 10.00, 0,49

Table 6.6: Examples of initial and optimal parameters (scale, orientation, and resolution) for
MR texture bank. The numbers in parentheses, represent the index of filters inside the bank.
The biggest variations from the initial parameters in the datasets, belong to filters, 19 for scale
& resolution and 1 for orientation.

Dataset Schmid (1)
UIUC 2.00, 1.00, 49
KTH-a 2.42, 1.18, 49
KTH-b 3.36, 1.93, 43
FMD 2.99, 2.94, 35
DTD 8.69, 3.01, 49

Initials 2.00, 1.00, 49

Table 6.7: Example of initial and optimal parameters (scale, orientation, and resolution) for
Schmid texture bank. The number in parentheses, corresponds to the index of filter in the
bank. The largest diversions from the initial parameters, come from scales, then orientations
and finally, resolutions.
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Figure 6.4: Examples of (a) initial filters and their corresponding parametric texture filters,
learned for (b) UIUC; (c) KTH-TIPS2-a; (d) KTH-TIPS2-b; (e) FMD; (f) DTD datasets. The
optimization mainly focuses on scale & orientation parameters for directional filters, and scale
& resolution for rotational filters. The differences between initial and optimal parameters vary,
with respect to, the quality of the texture images (focus & illumination) and the number of
texture classes of the dataset.
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6.3.2 Separable Texture Filters

Consider the set of texture filters F = {F1, . . . , F|F |} again but this time each filter F, of size

r× r, is generated by multiplication of a vertical v ∈ Rr×1 and a horizontal h ∈ R1×r vectors,

F = vh (6.12)

Computing of v and h form F is straightforward (Sironi et al. [2015]). Suppose that,

[U, S, V] = svd(F) (6.13)

where svd(.) stands for Singular Value Decomposition operator. Then, the vertical and

horizontal vectors to separate F, are defined as,

v =
√

S(1,1) U(:,1)

h =
√

S(1,1) VT
(:,1) (6.14)

Here, the aim is to find v and h, which impose the maximum possible class separation in

the output of the Fisher convolutional autoencoder network. The experiments follow the same

setup as parametric texture filters and the results are reported for each experiments.

Table 6.8 represents DSIFT compared to the Fisher convolutional features. It is clear that,

the proposed features outperform other descriptors, in all texture datasets except UIUC dataset.

Tables 6.9 and 6.10 compare the performances of deep features (DeCAF & VGG) and their

concatenations with DSIFT, and the Fisher convolutional features. It is worth mentioning

that, both of the above deep descriptors are pretrained on ILSVRC dataset (Russakovsky et al.

[2015]). This has a large number of samples and object classes, enabling better generalization

on the larger datasets. Again, the Fisher convolutional autoencoder network outperform on

all datasets except UIUC dataset, in contrast to the great improvements, with respect to, the

Table 6.8. On KTH-TIPS2-a and KTH-TIPS2-b datasets, the performance of joining with

DeCAF, is better than VGG. This impressive performance by the Fisher convolutional features,

is due to the quality of texture images in KTH datasets, which were captured under controlled

lighting conditions and fixed distances (Mallikarjuna et al. [2006]).
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 89.5±0.7
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 70.9±4.1
KTH-b 69.0±5.7 74.8±4.3 73.2±3.9 69.8±0.6
FMD 50.3±1.4 63.2±1.4 65.5±1.0 62.2±1.9
DTD 59.6±1.0 57.6±1.5 58.3±1.1 60.1±1.3

Table 6.8: Mean accuracy of dense SIFT (DSIFT), DeCAF(FC6), VGG-VD and the Fisher
convolutional autoencoder network, for separable texture filters. Except on DTD dataset, the
proposed deep architecture is not successful to outperform others.

Dataset DeCAF DSIFT + DeCAF Fisher + DeCAF
UIUC 96.4±0.7 98.6±0.7 98.7±0.6
KTH-a 73.9±4.2 78.8±3.7 81.1±2.2
KTH-b 74.8±4.3 79.3±3.9 85.1±0.9
FMD 63.2±1.4 67.3±1.1 77.8±2.9
DTD 57.6±1.5 66.5±1.4 74.7±2.4

Table 6.9: Mean accuracy of the Fisher convolutional autoencoder network in concatenation
with DeCAF model (pretrained on ImageNet), for separable texture filters. The proposed
approach greatly improves the performance on all the datasets.

Dataset VGG DSIFT + VGG Fisher + VGG
UIUC 96.7±1.5 98.8±0.7 96.3±0.1
KTH-a 73.3±3.9 77.8±4.1 78.4±7.4
KTH-b 73.2±3.9 78.3±2.5 79.1±0.6
FMD 65.5±1.0 67.5±0.9 72.5±2.5
DTD 58.3±1.1 67.2±1.0 79.6±1.3

Table 6.10: Mean accuracy of the Fisher convolutional autoencoder network in concatenation
with VGG-VD model (pretrained on ImageNet), for separable texture filters. The proposed
method works better everywhere, except for UIUC dataset, containing grayscale images.
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Dataset Others Fisher
UIUC 98.8±0.7 98.7±0.6
KTH-a 78.8±3.7 81.1±2.2
KTH-b 79.3±3.9 85.1±0.9
FMD 67.5±0.9 77.8±2.9
DTD 67.2±1.0 79.6±1.3

Table 6.11: The best mean accuracies of other methods (Others), in comparison with, the
Fisher convolutional autoencoder network, for separable texture filters. The results confirm
the superior ability of the proposed deep architecture at improving texture classification
performance, on the datasets with variety of image qualities and numbers of texture classes.

In contrast, the concatenation with VGG-VD performs better than DeCAF, on FMD and

DTD datasets, because here, the texture images were gathered from the web with a huge variety

of lighting and capturing conditions. It seems that VGG-VD generalizes better for uncontrolled

conditions in comparison with DeCAF, due to its deeper architecture.

Table 6.11 summarizes the best results from all the experiments. This confirms that the

Fisher convolutional autoencoder network is quite successful at imposing distinction among

highly-correlated texture patterns, especially those captured in uncontrolled conditions.

Figure 6.5 illustrates some examples of initial and their corresponding separable filters.

The first column includes classic texture descriptors from aforementioned filter banks and the

remaining columns, give the learned separable filters for each dataset. It can be seen that,

for some filters, the changes across various datasets are smaller than for others. This means

that, they are responsible for identifying common features in texture patterns. The filters

with considerable deformations usually connect to deeper stacks of autoencoders, that capture

higher order representations. For some of the optimized filters that are initially symmetrical,

the outputs do not always end up in symmetrical filters.
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Figure 6.5: Examples of (a) initial filters and their corresponding separable texture filters,
learned for (b) UIUC; (c) KTH-TIPS2-a; (d) KTH-TIPS2-b; (e) FMD; (f) DTD datasets. Since
each separable filter corresponds to its optimal horizontal-vertical vectors, the variations in
the learned reception fields, with respect to, the initial filters, are considerably larger than the
parametric texture filters.
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6.3.3 Supplementary Experiments

In order to further investigate the pipeline of Fisher convolutional autoencoder network,

additional experiments are conducted to measure the contribution of each modules, i.e.

projection-backprojection, convolution and dictionary learning to the overall performance of

the texture classification task.

The first experiment removes the projection-backprojection from the proposed pipeline.

Tables 6.12 show the results of this scenario. It can be seen that, they play a vital rule

in improving the texture classification results for all the experimental datasets, by imposing

discrimination among texture classes.

In the second experiment, the convolution operator is dropped from the Fisher

convolutional autoencoder network. The results, presented in Tables 6.13, confirm that a Fisher

autoencoder does better texture classification with the convolution. This is because, textures

are highly-correlated patterns that need high-order convolutional features for recognition.

The third experiment removes the dictionary learning from the Fisher convolutional

autoencoder network. According to the outcomes, presented in Table 6.14, it is critical for

the purpose of texture classification. It seems that, when higher distinction is imposed into the

convolutional features, they can generate dictionaries of higher resolutions.

6.4 Conclusion

In this chapter, coding-decoding layers of convolutional autoencoder networks were modified

by the Fisher discrimination, to learn optimal parameters of texture filters and improve the

classification performance. A Fisher autoencoder was composed of projection, convolution and

backprojection layers. For projection and backprojection, mapping matrices were calculated

by optimizing Fisher’s criterion with a regularization term, targeting at better class separability.

The experiments with parametric and separable texture filters showed improvements on texture

classification performance. The supplementary experiments verified the contributions of all the

proposed layers to the performance of the Fisher autoencoder.
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 82.2±1.7
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 57.4±3.4
KTH-b 69.0±5.7 74.8±4.3 73.2±3.9 61.0±4.5
FMD 50.3±1.4 63.2±1.4 65.5±1.0 42.7±1.4
DTD 59.6±1.0 57.6±1.5 58.3±1.1 53.8±2.1

Dataset DeCAF DSIFT + DeCAF Fisher + DeCAF
UIUC 96.4±0.7 98.6±0.7 85.2±2.3
KTH-a 73.9±4.2 78.8±3.7 62.6±4.6
KTH-b 74.8±4.3 79.3±3.9 67.3±2.8
FMD 63.2±1.4 67.3±1.1 58.8±6.8
DTD 57.6±1.5 66.5±1.4 57.1±1.2

Dataset VGG DSIFT + VGG Fisher + VGG
UIUC 96.7±1.5 98.8±0.7 84.9±4.1
KTH-a 73.3±3.9 77.8±4.1 62.1±2.4
KTH-b 73.2±3.9 78.3±2.5 71.0±5.3
FMD 65.5±1.0 67.5±0.9 58.9±2.1
DTD 58.3±1.1 67.2±1.0 60.8±2.0

Table 6.12: Mean accuracy of the Fisher convolutional autoencoder network, without
projection-backprojection. According to the results, projection-backprojection are vital
modules of the proposed deep architecture, because they successfully impose greater
distinction among the different texture classes. This leads to better classification, compared
to the current approaches elsewhere in literature.
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 71.3±3.3
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 51.6±5.0
KTH-b 69.0±5.7 74.8±4.3 73.2±3.9 55.1±6.1
FMD 50.3±1.4 63.2±1.4 65.5±1.0 38.7±1.6
DTD 59.6±1.0 57.6±1.5 58.3±1.1 46.8±2.1

Dataset DeCAF DSIFT + DeCAF Fisher + DeCAF
UIUC 96.4±0.7 98.6±0.7 74.9±3.3
KTH-a 73.9±4.2 78.8±3.7 61.7±4.7
KTH-b 74.8±4.3 79.3±3.9 62.0±6.3
FMD 63.2±1.4 67.3±1.1 52.1±2.3
DTD 57.6±1.5 66.5±1.4 43.4±2.1

Dataset VGG DSIFT + VGG Fisher + VGG
UIUC 96.7±1.5 98.8±0.7 75.5±4.2
KTH-a 73.3±3.9 77.8±4.1 58.8±2.8
KTH-b 73.2±3.9 78.3±2.5 64.1±4.8
FMD 65.5±1.0 67.5±0.9 52.2±2.1
DTD 58.3±1.1 67.2±1.0 47.9±1.8

Table 6.13: Mean accuracy of the Fisher convolutional autoencoder network, without
convolution operator. The outcomes show that convolution of texture filters after projection and
before backprojection, allows to extract higher-order features. These significantly contribute
to better separability among learned dictionaries, employed for the texture classification.
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Dataset DSIFT DeCAF VGG Fisher
UIUC 96.6±0.7 96.4±0.7 96.7±1.5 81.2±2.6
KTH-a 68.4±5.6 73.9±4.2 73.3±3.9 55.7±2.9
KTH-b 69.0±5.7 74.8±4.3 73.2±3.9 57.3±1.6
FMD 50.3±1.4 63.2±1.4 65.5±1.0 43.0±3.5
DTD 59.6±1.0 57.6±1.5 58.3±1.1 47.5±3.2

Dataset DeCAF DSIFT+DeCAF Fisher + DeCAF
UIUC 96.4±0.7 98.6±0.7 80.8±4.1
KTH-a 73.9±4.2 78.8±3.7 67.4±3.5
KTH-b 74.8±4.3 79.3±3.9 64.4±4.8
FMD 63.2±1.4 67.3±1.1 56.6±5.0
DTD 57.6±1.5 66.5±1.4 54.9±5.2

Dataset VGG DSIFT+VGG Fisher + VGG
UIUC 96.7±1.5 98.8±0.7 82.9±2.3
KTH-a 73.3±3.9 77.8±4.1 66.2±3.6
KTH-b 73.2±3.9 78.3±2.5 67.8±2.5
FMD 65.5±1.0 67.5±0.9 56.7±5.2
DTD 58.3±1.1 67.2±1.0 55.6±4.8

Table 6.14: Mean accuracy of the Fisher convolutional autoencoder network, without
dictionary learning. Based on the experimental results, dictionary learning is the best
classification approach to be taken for highly-correlated textures. This supremacy comes from
better discrepancy in the convolutional features, imposed by the projection-backprojection, that
eventually, generates high-distinction dictionaries.
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Part III

Object Recognition
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Chapter 7

Multipartite Pooling

The considerable complexity of object recognition makes it an interesting research topic in

computer vision. Deep neural networks have recently addressed this challenge, with close

precision to human observers. They recognize thousands of objects from millions of images,

by using the models with large learning capacity. This chapter proposes a novel pooling

strategy that learns how to rank convolutional features adaptively, allowing the selection of

more informative representations.

To this end, the Fisher discrimination for dimension expansion is exploited, to project

the features into a space, spanned by the number of classes in the dataset under study. This

mapping is employed as a measure to rank the existing features, with respect to their specific

discriminant power, for each classes. Then, multipartite ranking is applied to score the

separability of instances, and to aggregate one-versus-all scores, giving an overall distinction

score for each features. For the pooling, features with the highest scores are picked in a pooling

window, instead of maximum, average or stochastic random assignments.

Spatial pooling of convolutional features, is critical in many deep neural networks.

Pooling aims to select and aggregate features over a local reception field, into a local bag

of representations, that are compact and resilient to transformations and distortions of the

input (Boureau et al. [2010]). Common pooling strategies often take sum (Fukushima [1988]),

average (Le Cun et al. [1990]), or maximum (Jarrett et al. [2009]) response. There are

also variants that enhance maximum pooling performance, such as, generalized maximum

pooling (Murray and Perronnin [2014]) or fractal maximum pooling (Graham [2014]).

Deterministic pooling can be extended to stochastic alternatives, e.g. random selection of

an activation, according to a multinomial distribution (Zeiler and Fergus [2013]).
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7.1 Method

There exists a vast literature on instance selection and feature ranking. Instance selection

regimes usually belong to either condensation or edition proposals (Leyva et al. [2015]). They

attempt to find a subset of data, in which, a trained classifier is provided with, similar or

close validation error, as the primary data. Condensed Nearest Neighbour (CoNN) (Hilborn

[1968]), searches for a consistent subset, where every instance inside is assumed to be correctly

classified. Some variants of this method are Reduced Nearest Neighbour (RNN) (Gowda and

Krishna [1979]), Selective Nearest Neighbour (SNN) (Ritter et al. [1975]), Minimal Consistent

Set (MCS) (Dasarathy [1994]), Fast Nearest Neighbour Condensation (FNNC) (Angiulli

[2007]), and Prototype Selection by Clustering (PSC) (Olvera-López et al. [2010]).

In contrast, Edited Nearest Neighbour (ENN) (Wilson [1972]), discards the instances that

disagree with the classification responses of their neighbouring instances. Some revisions

of this strategy, are Repeated Edited Nearest Neighbour (RENN) (Tomek [1976]), Nearest

Centroid Neighbour Edition (NCNEdit) (Sánchez et al. [2003]), Edited Normalized Radial

Basis Function (ENRBF) (Jankowski and Grochowski [2004]), and Edited Nearest Neighbour

Estimating Class Probabilistic and Threshold (ENNth) (Vázquez et al. [2005]).

On the other hand, the family of feature ranking algorithms can be mainly grouped into,

preference learning, bipartite, multipartite, or multilabel ranking. In situations where the

instances have only binary labels, the ranking is called bipartite. Different aspects of bipartite

ranking have been investigated in numerous studies including, RankBoost (Freund et al.

[2003]), RankNet (Burges et al. [2005]), and AUC maximizing SVM (Brefeld and Scheffer

[2005]), which are the ranking versions for AdaBoost, logistic regression, and SVM.

There are also several ranking measures, such as, average precision and Normalized

Discounted Cumulative Gain (NDCG). For multilabel instances, multipartite ranking seeks

to maximize the volume under the ROC surface (Waegeman and De Baets [2011]), which is in

contrast with the minimization of the pairwise ranking cost (Uematsu and Lee [2015]).
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The problem of employing either instance selection or feature ranking methods for pooling

in deep neural networks, appears at the testing phase of trained models. The existing ranking

algorithms, mostly deals with the training-time ranking. As a result, they are not usually

advantageous for the pooling of convolutional features in the test phase. Without pooling, the

performance of deep learning architectures degrades substantially. The local feature responses

propagate less effectively to neighbouring receptive fields, thus the local-global representation

power of the convolutional network diminishes. Moreover, the network becomes very sensitive

to input deformations.

To tackle the above issues, a novel strategy i.e. multipartite pooling, is introduced. This

ranks convolutional features by employing supervised learning. In supervised learning, the

trained scoring function reflects the ordinal relation among class labels. The multipartite

pooling scheme learns a projection from the training set. Intuitively, this is a feature selection

operator, whose aim is to pick the most informative convolutional features, by learning a

multipartite ranking scheme from the training set. Inspired by stochastic pooling, higher ranked

activations in each window, are picked with respect to their scoring function responses. Since

this multipartite ranking is based on the class information, it can generate a coherent ranking

of features, for both of the training and test sets. This also leads to an efficient spread of

responses, and effective generalization for deep convolutional neural networks.

In summary, the proposed multipartite pooling method has several advantages. This

considers the distribution of each class and calculates the rank of individual features. Due

to the data-driven process of scoring, the performance gap between training-test errors, is

considerably closer. It also generates superior performance on standard benchmark datasets,

in comparison with the average, maximum and stochastic pooling schemes, when identical

evaluation protocols are applied. The conducted experiments on various benchmarks, confirm

that the proposed strategy of multipartite pooling, consistently improves the performance of

deep convolutional networks, by using better model generalization for the test-time data.
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7.2 Formulation

This section begins with multipartite ranking and moves towards the multipartite pooling. The

multipartite ranking means scoring of each representation in the feature set, with respect to the

distinctive information. Instances with higher scores are expected to be more informative, and

hence, receive higher ranks. The intuition of multipartite pooling is about picking the activation

instances with the higher scores (ranks) in a pooling window, to achieve better activations

in the pooling layer. A graphical interpretation of feature vs instance ranking is depicted in

Figure 7.1, where columns represent the activations.

For a two-class regime, the criterion to calculate the significance of each feature, can

be selected from statistical measures, such as, absolute value two-sample t-test with pooled

variance estimate (Jain et al. [2003]); relative entropy or Kullback-Leibler distance (Hershey

and Olsen [2007]); minimum attainable classification error or Chernoff bound (Nussbaum and

Szkoła [2009]); area between the empirical Receiver Operating Characteristic (ROC) curve and

the random classifier slope (Fawcett [2006]); and absolute value of the standardized u-statistic

of a two-sample unpaired Wilcoxon test or Mann-Whitney test (Bohn and Wolfe [1994]).

Suppose that a set of instances X = {X1, . . . , X|X |} are assigned to a predefined label set

L = {L1, . . . , L|L|}, such that, X is a matrix with |X | instances (rows). The aim is to rank the

features (columns), using an independent evaluation criterion. This criterion is a distance that

measures the significance of an instance, for imposing higher class distinction in the set X .

The absolute value of the criterion for a bipartite ranking scenario, with only two valid labels

{L1, L2}, is defined as,

CB(X ) = KL12(X1, . . . , X|X |) (7.1)

where KL is the Kullback-Leibler divergence and CB(X ) is the binary criterion measured for

each feature (column) of the set X . This equation can be extended to the summation of binary

criteria, where each labels is considered as primary label (foreground) and the rest are merged

as secondary labels (background).
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Figure 7.1: Feature vs instance ranking. A set of features (columns) and instances (rows)
are assigned to |L| different labels. They are ranked upon their separability, represented by
different line patterns and are scored. These scores are used for selecting the best features or
instances. To employ either of them for convolutional pooling, the labels must be known. The
problem is that, classic feature-instance ranking methods are specific to the training-time data,
and there is no way to exploit them for pooling of the test-time data. To solve this inconsistency,
the notion of labels is mapped to the test data and then, instance ranking strategies are applied
to the pooling layers. This is accomplished by the supervised projection.

The overall criterion of the multipartite case, with multiple labels L, can be formulated as,

CM(X ) =
i=|L|

∑
i=1, j 6=i

KLij(X1, . . . , X|X |) (7.2)

where KLij is the cumulative Kullback-Leibler distance of label Li to the rest of the labels of

set L, which are ∀ Lj ∈ L− Li. It is clear that, higher values of CM(X ) for a feature, means

better class separability. A high-ranked representation is beneficial to any classifier, because

there are better distinctions between classes in the set X .

It is possible to employ the above formulation for instance ranking. In other

words, instances (rows) are ranked instead of features (columns), which is required for

pooling operation, where high-ranked instances are selected as the representations for each

convolutional filters. In contrast with feature ranking, the rows of set X , which correspond to

convolutional representations, are ranked in the pooling layers.
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To connect the features into instances, a projection from the feature space into a new

instance space, spanned by the number of classes in X , is employed. In this space, a new

set P is created by multiplying the feature set X with a projection matrix A, such that,

CM(P) =
i=|L|

∑
i=1, j 6=i

KLij(X1A, . . . , X|X |A) (7.3)

where the setP is a matrix with |X | instance (rows) and |L| features (columns). The projection

matrix A enables the same ranking strategies for features of the set X , to be applied to the

instances of the P , so that, the highly-ranked activations are selected.

7.2.1 Supervised Projection

To formulate the above projection, the matrix A can be considered as a mapping, which tries

to project X into a space with c = |L| dimensions. The projection matrix A is determined to

minimize the Fisher criterion given by,

J (A) = tr
[
(ASwAT)(ASbAT)−1

]
(7.4)

that tr(.) is the diagonal summation operator. The within (Sw) and between (Sb) class

scatterings are defined as,

Sw =
c

∑
j=1

∑
xi∈Cj

(xi − µj)(xi − µj)
T (7.5)

Sb =
c

∑
j=1

(µj − µ̄)(µj − µ̄)T (7.6)

where c, µj and µ̄ are number of classes, mean over class Cj and mean over the set X . The

matrix Sw can be regarded as average class-specific covariance, whereas Sb can be viewed as

the mean distance between all different classes. The purpose of Equation 7.4 is to maximize

the between-class scattering, while preserving within-class dispersion. The solution can be

retrieved from a generalized eigenvalue problem SbA = λSwA. For c = |L| classes, the

projection matrix A builds upon eigenvectors corresponding to the largest c eigenvalues of

S−1
w Sb (Bishop [2006]).
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Figure 7.2: Multipartite ranking. The projected setP is ranked and the scores are aggregated to
compute overall criterion CM(P). Since the columns represent classes inside the feature setX ,
bipartite rank of each columns, is calculated with respect to the rest of columns. This generates
c = |L| different scores, represented by different line patterns, for each of the |P| instances.
By sliding an accumulative bar, represented by grey rectangle, the overall score is computed for
each instances. These overall scores are used to rank and pool the most informative instances,
which are activations of the pooling layers.

To yield better distinction, the ratio of between and within class scatterings

(quotient-of-trace) is minimized (Cunningham and Ghahramani [2015]), by imposing

orthogonality to the following cost function,

Q(A) = tr(ASwAT)
[
tr
(
ASbAT)

]−1
+ λ‖I−AAT‖2 (7.7)

The first part of function Q(A) defines a form of Fisher criterion that aims for making the

highest possible separability among classes. The second term is a regularization term imposing

orthogonality into the projection matrix A. Looking back at Equation 7.4, it can be seen that

the set of eigenvectors corresponding to the largest c eigenvalues of S−1
w Sb is a solution for the

above optimization problem. This can be taken as an initial projection matrix A(0).

Now, it is possible to minimize Q(A) by using stochastic gradient descent. Here,

A(0) is employed as an initialization point, because conventional Fisher criterion is the

trace-of-quotient, which can be solved by generalized eigenvalue method. Equation 7.7 is

the quotient-of-trace, that requires a different solution (Cunningham and Ghahramani [2015]).
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Algorithm 4 Supervised Projection

Input: feature set X
Output: projection matrix A

1: Compute Sw (Equation 7.5) and Sb (Equation 7.6)
2: Set A(0) as largest eigenvalues of S−1

w Sb
3: Minimize Equation 7.7 by using Equation 7.10

To work out the closed form derivatives of Equation 7.7, suppose that Q(A) is composed

of Q1(A) and Q2(A) as follows,

Q1(A) = tr(ASwAT)
[
tr(ASbAT)

]−1 (7.8)

Q2(A) = λ‖I−AAT‖2 (7.9)

According to matrix calculus (Petersen et al. [2008]),

∂Q
∂A

=
tr(ASwAT)[
tr(ASbAT)

]2

(
ST

b + Sb
)
AT

− 1
tr(ASbAT)

(
ST

w + Sw
)
AT

− 2λ

‖I−AAT‖2
AT(I−AAT) (7.10)

The computation of A is summarized in Algorithm 4. For implementation purposes, the

built-in function of Matlab optimization toolbox (Coleman and Li [1996]) is employed.

7.2.2 Multipartite Ranking

Drawing upon the above information, it is possible to put forward the proposed multipartite

ranking scheme. Using the instance ranking strategy, one can take the feature set X , deploy

the supervised projection A (Algorithm 4) to produce the projected set P , and calculate the

cumulative Kullback-Leibler distance (Equation 7.3), as the ranking scores, for each instance

of the projected set P .
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Algorithm 5 Multipartite Ranking

Input: feature set X , label set L
Output: overall criterion CM(P)

1: Compute the projection matrix A (Algorithm 4)
2: Calculate the projected set P = XA

for i = 1 to |L| do
3: Split P between labels {Li, Lj}, when Lj ∈ L− Li
4: Calculate KLij(P) (Equation 7.3)

end for

5: Set CM(P) = ∑ KLij(P)

Since the number of instances in P is equal to the number of instances in X , and these two

matrices are related linearly through A via P = XA, the overall criterion CM(P) is sorted

to rank the instances of the set X , in regard to their class separability. Algorithm 5 represents

the multipartite ranking method. The process of the multipartite ranking is also visualized in

Figure 7.2. Each column of the set P represents a specific class of the set X and hence, the

Kullback-Leibler binary scoring scheme (one-versus-all) is employed to set a criterion measure

for each of its individual instances (rows). After it has been applied to all the columns, it starts

to scan rows and accumulate scores, resulting in the overall criteria, CM(P). This is then used

to rank the instances of the projected set P .

The reason for projecting to the space spanned by the number of classes, is to use the

above, one-versus-all strategy. The bipartite ranking by Kullback-Leibler divergence requires

that, one main class is selected as the foreground label, while those remaining are used as

background labels. It gives a measure of how the foreground is separated from the background

data. It is necessary to use statistics to ensure that the cumulative criterion, CM(P) is a true

representation of the all instances, contained within the set X .

When X is projected to lower dimensions than the number of available classes, the result is

that, some of the classes are missed. In contrast, projection of X to higher dimensions than the

number of classes, leads to partitioning of some classes to pseudo labels, that are not queried

during the test phase. Either way, the generated scores are not reliable for the sake of pooling,

because they are not derived from the actual distribution of the classes.
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Algorithm 6 Multipartite Pooling

Input: convolutional feature stack S ∈ Rh×w×d×n

Output: overall criterion CM(S)

1: Reshape each Si ∈ Rh×w×d to Si ∈ Rhw×d

2: Concatenate all Si columns to give X ∈ Rhwn×d

3: Calculate CM(P) ∈ Rhwn×1 by Algorithm 5
4: Partition CM(P) to give CM(S) ∈ Rh×w×n

5: Pool the activations based on CMi ∈ Rh×w for all i ∈ [1 : n]

7.2.3 Multipartite Pooling

The above multipartite ranking strategy can be employed for the pooling. In general, a

deep convolutional neural network consists of consecutive convolution and pooling layers.

The convolutional layers extract common patterns within local patches. Then, a nonlinear

elementwise operator is applied to the convolutional features, and the resulting activations are

passed to the pooling layers. These activations are less sensitive to the precise locations of

structures within the data, than the primary features. Therefore, the consecutive convolutional

layers can extract features, that are not susceptible to spatial transformations or distortions of

the input (Zeiler and Fergus [2013]).

Suppose that a stack of convolutional features S = {S1, . . . , S|S|} passes through the

pooling layer. The matrix S is an array of dimensions h×w× d× n where h and w are height

and width of samples, d is depth of stack (number of filters), such that Si ∈ Rh×w×d creates a

three-dimensional vector, and n is number of samples in the stack (n = |S|).

The standard pooling methods either retain the maximum or average value, over the

pooling region per channel. The multipartite pooling method begins with the reshaping

of feature stack S to form n two-dimensional Xi ∈ Rhw×d. The elements of set

X = {X1, . . . , X|X |} are concatenated such that |X | = n and X ∈ Rhwn×d is a

two-dimensional matrix. Now, X is ready to deploy Algorithm 5 and compute the overall

criterion CM(P) ∈ Rhwn×1. Partitioning to n and reshaping into h × w windows, give

CM(S) = {CM1 , . . . , CM|S|}, that CMi ∈ Rh×w provides the rank of each pixels of Xi. For

pooling, a sliding window goes through each region and picks the representation with the

greatest CM(S). These are the activations with the best separation among available classes.
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As a numerical example, consider MNIST dataset with |L| = 10 classes. The first pooling

layer is fed by a stack S , consisting of the convolutions of d = 20 filters, with n = 100 frames,

of size w = 24 by h = 24 pixels. First, S is reshaped to 100 samples of size 576× 20 pixels,

form the set X , which will be concatenated as a 57600 × 20 array. Second, the projection

matrix A ∈ R20×10 is calculated to project X . Third, CM(P) ∈ R57600×1 is computed and

partitioned into 100 criterion measures CMi , of size 24× 24 pixels. For the pooling of S , a

2× 2 window moves along each frame and picks the top-score pixels. The output is a set of

100 features of size 12× 12 pixels for each of 20 convolutional filters.

7.3 Experiments

For evaluation purposes, the multipartite pooling is compared with the popular maximum,

average and stochastic poolings. A standard experimental setup (Zeiler and Fergus [2013])

is followed to apply the multipartite pooling for MNIST, CIFAR and Street View House

Numbers (SVHN) datasets. The results show that, when multipartite pooling is employed to

pool convolutional features, lower test error rates than other pooling strategies, are achieved.

For implementation, the library provided by the Oxford Visual Geometry Group (Vedaldi and

Fulkerson [2008]) is used.

7.3.1 Datasets

The MNIST dataset (LeCun et al. [1998]), contains 60, 000 training examples, and 10, 000

test samples, normalized to 20× 20 pixels, centred by centre of mass in 28× 28 pixels, and

sheared by horizontally shifting, such that, the principal axis is vertical. The foreground pixels

were set to one, and the background to zero.

The CIFAR dataset (Krizhevsky and Hinton [2009]), includes two subsets. The first subset,

CIFAR-10 consists of 10 classes of objects with 6, 000 images per class. The classes are

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. It was divided into

5, 000 randomly selected images per class as training set, and the rest served as test samples.

The second subset, CIFAR-100 has 600 images for each of 100 classes. These classes also

come in 20 super-classes, each consisting of five classes.
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Figure 7.3: Examples of images from MNIST, CIFAR and SVHN Datasets.

The SVHN dataset (Netzer et al. [2011]), was extracted from a large number of Google

Street View images by automated algorithms and the Amazon Mechanical Turk (AMT). It

consists of over 600, 000 labelled characters in full numbers and MNIST-like cropped digits in

32× 32 pixels. Three subsets are available containing 73, 257 digits for training, 26, 032 for

testing and 531, 131 extra samples.

7.3.2 Results & Discussion

The following tables represent the evaluation results for four different schemes, including max,

average, stochastic, and multipartite poolings, in terms of the training and test errors. To gain

an insight into added computational load, one should recall that the only intensive calculations

are related to working out the supervised projection, at the training phase. This procedure

(Algorithm 4), depends on the number of activations (h× w× n instances) and convolutional

filters (d dimensions), which are employed in Algorithm 6. For testing, one just multiplies

and no computational cost is involved. For example, the number of samples, trained in an

identical architecture for MNIST dataset, are 285, and 195 samples per second for the max and

multipartite pooling strategies, respectively.

The classification performance on MNIST dataset is reported in Table 7.1. It can be seen

that, max pooling gives the best training performance, but its test error is larger than the

stochastic and multipartite pooling. In other words, it may overfit for MNIST, although its

test performance is higher than the average pooling. The multipartite pooling performs better

than all other schemes, despite greater training error, compared to max and stochastic pooling.



§7.3 Experiments 89

Pooling Train (%) Test (%)
Average 0.57 0.83
Max 0.04 0.55
Stochastic 0.33 0.47
Multipartite (Proposed) 0.38 0.41

Table 7.1: Classification errors for different pooling strategies on MNIST dataset. The
multipartite pooling approach provides the lowest test error, in spite of high training error.
This is due to better generalization of the proposed pooling, compared to the other methods.

Pooling Train (%) Test (%)
Average 1.92 19.24
Max 0.0 19.40
Stochastic 3.40 15.13
Multipartite (Proposed) 12.63 13.45

Pooling Train (%) Test (%)
Average 11.20 47.77
Max 0.17 50.90
Stochastic 21.22 42.51
Multipartite (Proposed) 36.32 40.81

Table 7.2: Classification errors for different pooling strategies on CIFAR-10 and CIFAR-100
datasets. The multipartite pooling outperforms other pooling schemes on test errors, but it
is behind on training errors. The close gap between training and test errors, leads to better
classification performance for the proposed pooling strategy.

Pooling Train (%) Test (%)
Average 1.65 3.72
Max 0.13 3.81
Stochastic 1.41 2.80
Multipartite (Proposed) 2.09 2.15

Table 7.3: Classification errors for different pooling strategies on SVHN dataset. The
multipartite pooling scheme gives the best performance on the test, that is closely followed
by the training error.
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The multipartite pooling is more competent because it draws upon the statistics of

training-test data for pooling. It is in contrast to picking the maximum response (max pooling);

smoothing the activations (average pooling); and random selection (stochastic pooling); which

disregard the data distribution. In a pooling layer of any deep learning architecture, aggregation

of the best available features is critical to infer complicated contexts, such as, shape derived

from primitives of edge and corners. The proposed pooling learns how to pick the best

informative activations from the training set, and then, employs this knowledge at the test

phase. As a result, the performance consistently improves in all the experiments.

Figures 7.4 and 7.5 show the training-test performances of MNIST dataset for 20 epochs.

Except for the early epochs, they are quite close to each other in the multipartite pooling

regime. The reason is that, both of the training-test poolings are connected with a common

factor; the projection matrix A. This is trained with the training set and is deployed by

multipartite pooling on the test set, to pick the most informative activations. Since the same

criterion (Kullback-Leibler) is employed to rank the projected activations for training-test,

and they are mapped with the same projection matrix A, it is expected that the trained

network will demonstrate better generalization than alternative pooling schemes, where the

training-test poolings are statistically disconnected. The graphs show that the multipartite

pooling generalizes considerably better.

Tables 7.2 provides the performance metrics for CIFAR datasets. It is apparent that the

multipartite pooling outperforms other approaches on the test performance. It also prevents

the model from overfitting, in contrast to the max pooling. In the proposed pooling method,

better generalization also contributes to another advantage; preventing under-overfitting. As

mentioned before, pooling at the test phase is linked to the training phase by the projection.

This ensures that the test performance follows the training closely and hence, it is less likely to

end up under-overfitting.

One striking observation is that the gap between the training-test errors is wider for

CIFAR-100 compared to CIFAR-10. This relates to the number of classes in each subsets of

CIFAR. Since CIFAR-100 has more classes, it is more difficult to impose separability, hence,

the difference between the training and test performances will increase. Figures 7.6 and 7.7

depicts the errors of CIFAR-10 dataset for 50 epochs. It is clear that employing of the max

pooling results in a huge gap between the training-test performances due to the overfitting.
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Finally, the evaluation outcomes for SVHN dataset are presented in Table 7.3. Again,

the multipartite pooling does a better job on the test. The error is close to the stochastic

pooling method. This implies that when the number of samples in a dataset increases greatly,

the multipartite ranking scores lean towards the probability distribution, generated by the

stochastic pooling. Here, any infinitesimal numerical errors may also lead to an inaccurate

pooling, which may, in return, degrade the informative activations of a layer for both of the

pooling methods. Since the multipartite pooling takes a deterministic approach, the effect of

numerical inconsistencies, is considerably smaller than stochastic pooling, which randomly

picks activations on a multinomial distribution (Zeiler and Fergus [2013]).

Overall, the employment of multipartite ranking for the purpose of pooling in deep

convolutional neural networks, produces superior results compared to all the other strategies,

tested in the experiments. It is robust to overfitting and shows better generalization

characteristics, by connecting the training and test statistics.

7.4 Conclusion

In this chapter, a new pooling scheme for deep convolutional neural networks was proposed,

using Fischer discrimination to select the optimal features which highly contributed to the

classification performance. Instead of using a regular pooling scheme, this algorithm aimed at

actively searching of the most discriminative features in every pooling layer. The multipartite

pooling only required the training data to come up with the pooling layers and hence, its extra

computational complexity was restricted to the training phase. The experiments conducted on

three well-known dataset (MNIST, CIFAR and SVHN) for image classification, demonstrated

improved performance over the widely-used maximum, minimum, and stochastic pooling

regimes. The results also showed that the proposed pooling scheme was beneficial to prevent

overfitting, while imposed a better regularization and higher generalization, without the

fine-tuning of any hyper-parameters.
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Figure 7.4: Max pooling for MNIST. The first graph represents the loss function (objective)
for both training (train) and test (val) on MNIST dataset. The other graphs correspond to the
top 1 (top1err) and the top 5 (top5err) errors.

Figure 7.5: Multipartite pooling for MNIST. In comparison with the max pooling (Figure 7.4),
the test loss and errors (val) are reduced by applying the multipartite pooling technique. Note
that the training and test performances get closer to each other, indicating better generalization
of the trained network.
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Figure 7.6: Max pooling for CIFAR-10. Compared to MNIST, this results in greater loss and
errors on CIFAR-10, due to the variety in samples and tasks (character vs object recognition).
The gap between the training (train) and test (val) errors, is considerably wider for CIFAR-10.

Figure 7.7: Multipartite pooling for CIFAR-10. Besides smaller losses and errors, with respect
to the max pooling (Figure 7.6), the training (train) and test (val) performances indicate closer
gaps, due to better generalization of the model, using by multipartite pooling.
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Chapter 8

Distributed Backpropagation for

Transfer Learning

Transfer learning is a popular practice in deep neural networks. Fine-tuning of a large number

of parameters, is difficult due to the complex wiring of neurons between splitting layers. The

imbalanced distributions of data for primary and target domains, also adds up to the hurdle of

the problem. The reconstruction of the primary wiring for the target network is a heavy burden,

considering the size of interconnections across neurons.

For supervised learning, many classification algorithms assume the same distributions

for training and test data. In order to change this distribution, the statistical models must

be rebuilt. This is not always practical, due to the difficulty of recollecting the training

data or complexity of the learning process. One of the solutions is transfer learning, which

transfers the classification knowledge into a new domain (Pan and Yang [2010]). The aim is

to learn highly generalized models for either domains with different probability distributions,

or domains without labelled data (Wang and Schneider [2014], Zhang et al. [2013]). Here,

the main challenge is to reduce the shifts in data distributions between the domains, by using

algorithms that minimize their discrimination. It is worth mentioning that, this cannot resolve

domain-specific variations (Long et al. [2016]).

Transfer learning has also proven to be highly beneficial at boosting the overall

performance of deep neural networks. Deep learning practices usually require a huge amount

of labelled data to learn powerful models. The transfer learning enables adaptation to a

different source with a small number of training samples.

95
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On the other hand, deep neural networks practically learn intermediate features. They

can provide better transfer learning, because some of them generalize well, among various

domains of knowledge (Glorot et al. [2011]). These transferable features generally

underlie several probability distributions (Oquab et al. [2014]), to reduce the cross-domain

discrepancy (Yosinski et al. [2014]). The common observation among several deep

architectures, is that, features learned in the bottom layers are not that specific, but transiting

towards top layers, tailors them to the target dataset or task.

A recent study of the generality or specificity of deep layers for transfer learning, show two

difficulties which may affect the transfer of deep features (Yosinski et al. [2014]). First, top

layers get quite specialized to their primary tasks and second, some optimization difficulties

arise due to the splitting of the network between adapted layers. In spite of these negative

effects, other studies have confirmed that transferred features, not only perform better than

random representation, but also provide better initialization.

This chapter proposes a distributed backpropagation scheme in which, the convolutional

filters are fine-tuned individually, but are backpropagated, all at once. This is done by means of

Basic Probability Assignment (BPA) (Sentz and Ferson [2002]) of evidence theory. Therefore,

the primary filters are gradually transferred, based on, their contributions to classification

performance of the target domain. This approach largely reduces the complexity of transfer

learning, whilst improving precision. The experimental results on standard benchmarks and

various scenarios, confirm the consistent improvement of the distributed backpropagation

strategy for the transfer learning.

8.1 Method

A novel framework for distributed backpropagation in deep convolutional networks is

introduced, that alleviates the burden of splitting a network through the middle of fragile

layers. The intuition is that, this difficulty relates to the complexity of deep architecture and

the imbalance data distribution of the primary and target domains.
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On one hand, the splitting of layers, results in optimization difficulty, because there is a

high complexity in the interconnections between neurons of adapted layers. To address this,

the convolutional filters are fine-tuned individually. This reduces the complexity of non-convex

optimization for the transfer learning problem. On the other hand, the imbalance problem

arises form different distributions of data, in the primary and target domains. This issue can

be handled by cost-sensitive, imbalanced learning methods. Since the power of deep neural

models, comes from mutual optimization of all parameters, the above fine-tuned convolutional

filters are joined by a cost-sensitive backpropagation scheme.

The emergence of new cost-sensitive methods for imbalanced data (Elkan [2001]), enables

the misclassification costs to be embedded in the form of a cost matrix. Meaningful information

is then able to be distributed to the learning process. The error, based on the misclassification

costs, is measured for each class, to form a confusion matrix. This matrix is the most

informative contingency table in imbalanced learning problems, because it gives the success

rate of a classifier in a special class, and the failure rate on distinguishing that class from other

classes. The confusion matrix has proven to be a great regularizer; smoothing the accuracy

among imbalanced data and giving importance to minority distributions (Ralaivola [2012]).

Determination of a probabilistic distribution from the confusion matrix, is highly effective

at producing a probability assignment, which contributes to the imbalanced problems. This

can be either constructed from recognition, substitution and rejection rates (Xu et al. [1992])

or both precision and recall rates (Deng et al. [2016]). The key point is to harvest maximum

possible prior knowledge from the confusion matrix, to overcome an imbalanced challenge.

The experiments confirm the advantage of the proposed distributed backpropagation for

transfer learning in deep convolutional neural networks.

8.2 Formulation

It is a general practice in transfer learning to include training of a primary deep neural network

on a dataset, followed by fine-tuning of learned features for another dataset, on a new target

network (Bengio et al. [2012]). The generality of selected features for both of the primary and

target domains, is critical to the success of transfer learning.
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Figure 8.1: Standard backpropagation for transfer learning. The parameters of the target
network can be either updated, in all layers or be frozen in the bottom layers, during
backpropagation. Overfitting is highly probable for a small target dataset on a large primary
network, due to the number of parameters. In contrast, underfitting is possible for a large target
dataset on a small primary network, because of imbalanced data distributions. To fine-tune the
pretrained network (primary) for the transferred network (target), backpropagation is applied
to the top layers of the deep network, fed by the target data, while bottom layers remain fixed.

For implementation, the primary network is trained and its bottom layers copied, to form

the target network. The top layers of the target network, are initialized randomly and are

trained by the target data. It is possible to employ backpropagation for all layers and fine-tune

their parameters for the target task, or freeze the copied primary layers, and only update the top

target layers. This is usually decided by the size of the target dataset and number of parameters

in the primary layers. Fine-tuning of large networks for small datasets, leads to overfitting, but

for small networks and large datasets, improves the performance (Sermanet et al. [2013]). A

diagram of standard backpropagation for transfer learning is presented in Figure 8.1.

To handle the overfitting issues, a distributed backpropagation paradigm is proposed. First,

the large number of fine-tuning parameters are divided, so as, to conquer the complexity of

the primary non-convex optimization. This is implemented by breaking of the l-layer network,

of depth d, to the d distributed l-layer single-filter networks, of depth one. This leads to a

decay rate of 1/d in the number of parameters, needing to be fine-tuned in each single-filter

networks. Second, this distributed architecture is fed with the target data. As a result, each

of the single-filter networks, generates the contingency matrix of its Softmax classifier for the

expected classification, recognition, or regression task.
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Figure 8.2: Distributed backpropagation for transfer learning. The primary network, pretrained
on the primary domain, is arranged in several single-filter networks, each of which fine-tunes
a single convolutional filter. For backpropagation, BPA is employed to determine the
contribution of each single-filter networks. The computed costs are multiplied by the error
gradients to backpropagate through the distributed single-filter networks, which are now fed
by the target data. The distributed backpropagation controls the rate of change in weights and
biases by a cost-sensitive formulation. As a result, the primary convolutional filters contribute
significantly to the performance of the target domain, generating larger steps for gradient
descent optimization. In contrast, the primary filters with small probability assignments, stop
iterative optimization by causing infinitesimal steps. This leads to a powerful transferred
model, which is better tailored to the target data distribution.

Third, BPA is employed to find out the contribution of each single-filter networks, to the

specific learning task, in the target domain. Finally, the calculated probability assignments are

normalized, to use as the costs of backpropagation, in each of the single-filter networks. In

other words, the parameters are updated by the multiplication of error gradients, and the cost

of each distributed single-filter networks (Figure 8.2).

The single-filter architectures are initialized by parameters, learned from the primary

domain, meanwhile, they are optimized by gradient descent through backpropagation on

the target domain. It differs from ensemble learning in that, single-filter networks are not

re-weighted, but their parameters are updated to cope with the target domain.
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8.2.1 Basic Probability Assignment

A confusion matrix is generally represented as class-based predictions against actual labels, in

the form of a square matrix. Inspired by Dempster-Schafer theory (Sentz and Ferson [2002]),

construction of BPA gives a vector, which is independent of the number of samples in each

classes and sums up to one, for each labels. BPA provides the ability to reflect the different

contributions of a classifier, or combine the outcomes of multiple weak classifiers. A raw,

two-dimensional confusion matrix, indexed by the predicted classes and actual labels, provides

some common measures of classification performance. Some general measures are accuracy

(the proportion of the total number of predictions that are correct), precision (a measure of the

accuracy, provided that a specific class has been predicted), recall (a measure of the ability

of a prediction model to select instances of a certain class from a dataset), and F-score (the

harmonic mean of precision and recall) (Sammut and Webb [2011]).

Suppose that a set of training samples X = {X1, . . . , X|X |} from C = {C1, . . . , C|C|}

different classes, are assigned to a label set L = {L1, . . . , L|L|}, using a classifier φ. Each

element nij of the confusion matrix Υφ is considered as the number of samples belonging

to class Ci, which assigned to label Lj. The recall (rij) and precision (sij) ratios for all the

i ∈ {1 . . . |C|} and j ∈ {1 . . . |L|}, can be defined as follows (Deng et al. [2016]),

rij =
nij

∑|C|i=1 nij

sij =
nij

∑|L|j=1 nij

(8.1)

It can be seen that, the recall ratio is summed over the predicted classes (rows), whilst the

precision ratio is accumulated by the actual labels (columns) of the confusion matrix Υφ. The

probability elements of recall (Ri) and precision (Si) for each individual class Ci are,

Ri =
rii

∑|C|j=1 rjj

Si =
sii

∑|L|j=1 sjj

(8.2)
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Algorithm 7 Basic Probability Assignment

Input: training set X , classifier φ
Output: basic probability assignment Θφ

1: Compute recall and precision (Equation 8.1)
2: Calculate recall and precision assignments (Equation 8.2)
3: Apply Dempster-Schafer rule of combination (Equation 8.3)

These elements are synthesized to form the final probability assignments by

Dempster-Schafer rule of combination (Sentz and Ferson [2002]), representing the recognition

ability of classifier φ to each of the classes of set C as,

Mi = Ri ⊕ Si =
RiSi

1−∑|C|i=1 RiSi

(8.3)

where the operator ⊕ is an orthogonal sum. The overall contribution of the classifier φ can be

presented as a probability assignment vector,

Θφ = {Mi | ∀ i ∈ [1, |C|]} (8.4)

It is worth mentioning that Θφ should be computed by the training set, because it is

assumed that, there is no actual label set L at the test time.

8.2.2 Distributed Backpropagation

Suppose that Φ = {φ1, . . . , φ|Φ|} is a set of Softmax loss functions of the single-filter

networks, presented in Figure 8.2. To apply the distributed backpropagation, Algorithm 7

should be followed for each of the classifiers. The result is a set of normalized probability

assignments as follows,

ΓΦ = {Γφk = ‖Θφk‖2 | ∀ k ∈ [1, |Φ|]} (8.5)
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Algorithm 8 Distributed Backpropagation for Transfer Learning

Input: primary network, target data
Output: fine-tuned target network

1: Compute ΓΦ (Equation 8.5) by using Algorithm 7

for k = 1 to |Φ| do
for all layers do

2: Compute feedforward activations (Equation 8.6)
3: Calculate backpropagation errors (Equation 8.8)
4: Update weights and biases (Equation 8.9)

end for
end for

It is known that in each layer l of the kth single-filter network, the feedforward propagation

is calculated as,

a(l) = σ(w(l)a(l−1) + b(l)) (8.6)

which w and b are weights and biases, a is an activation and σ is a rectification function.

Considering φ as the cost function of the kth network, the output error holds,

δ(l) = 5aφ� σ
′
(w(l)a(l−1) + b(l)) (8.7)

and the backpropagation error can be stated as,

δ(l) = ((w(l+1))T)δ(l+1) � σ
′
(w(l)a(l−1) + b(l)) (8.8)

For the sake of gradient descent, the weights and biases are updated via,

w(1) −→ w(1) − η Γφ ∑ δ(l+1)(a(l−1))T

b(1) −→ b(1) − η Γφ ∑ δ(l+1) (8.9)
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It can be seen that, greater Γφ of the kth single-filter network, makes larger steps to update

the weights and biases of the target domain, during distributed backpropagation, compared

to the standard backpropagation, with a fix η in the primary domain. This helps to only

update primary filters, which largely affect the target domain and also properly connect the

distributed single-filter networks, during the fine-tuning process. This also implies that, in

spite of forward-backward propagation in the target domain, the overall contribution of all

convolutional filters, is taken into account. Since the united backpropagation is involved in

every iterations of training, the single-filter networks are trained together, which is different

from ensemble learning. Algorithm 8 wraps up the proposed distributed strategy.

It is assumed that the number of classes and assigned labels are equal (|C| = |L|), although

the merging of different classes is a common practice, particularly in visual classification (for

example, vertical vs horizontal categories). The benefit lies in the fact that the bottom layers

of deep convolutional architectures, contribute to detecting first and second order features, that

are usually of specific directions, rather than specific distinguishing patterns of the objects.

This leads to a powerful hierarchical feature learning, in the case |C| � |L|. In contrast, some

classes can be divided into various subcategories, although they all get the same initial labels,

and hence this holds |C| � |L| to take the advantage of more general features in the top layers.

The proposed distributed backpropagation does not merge or divide the primary labels of the

datasets under study, although it seems that, this is able to boost the performance of transfer

learning, for both of the merging or dividing cases.

8.3 Experiments

Two different scenarios are considered to evaluate the performance of distributed

backpropagation for transfer learning. In the first scenario, the performance of fine-tuning for

pairs of datasets, with either close data distributions or number of classes, are observed. These

are MNIST & SVHN and CIFAR-10 & CIFAR-100 pairs, as primary & target domains, and the

performance of transfer learning, are reported in the form of training-test errors. For the second

scenario, transfer learning is applied for pairs of datasets, with far data-class distributions,

which are MNIST & CIFAR-10 and SVHN & CIFAR-100 pairs. In these experiments, the

datasets are arranged to examine the effect of dissimilar distributions, rather than overfitting.
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Dataset
Baseline

Train (%) Test (%)
MNIST 0.04 0.55
SVHN 0.13 3.81

CIFAR-10 0.01 19.40
CIFAR-100 0.17 50.90

Table 8.1: Baselines of classification errors on standard benchmarks. The results are produced
by deep learning of convolutional neural networks, on the datasets under examination.

As a practical example, suppose that the aim is to transfer MNIST as the primary domain,

to CIFAR as the target domain. To initialize, CIFAR data is presented to the MNIST pretrained

network, filter by filter, for each of the 20 convolutional filters of the MNIST network.

Then, the outputs of Softmax layers are passed to BPA module, and the error gradients are

multiplied by the specific cost of each filters. These new gradients backpropagate to all 20

single-filter networks, to update their weights and biases. After some iterations, the MNIST

network is transferred to the CIFAR network, through the distributed backpropagation scheme,

running on 20 fine-tuned, single-filter networks. The baselines of training and test errors on

the experimental datasets, are reported in Table 8.1. For ease of implementation and fast

replication of the results, the deep learning library provided by the Oxford Visual Geometry

Group (Vedaldi and Fulkerson [2008]), is deployed.

8.3.1 Transfer Learning on Fairly Balanced Domains

In this scenario, two pairs of datasets are targeted, which contain similar data distributions

and perform the same recognition tasks. The results are reported for standard vs distributed

backpropagations, in Table 8.2. The standard backpropagation trains the primary network and

fine-tunes the top layers for the target network (Bengio et al. [2012]). The proposed distributed

backpropagation employs BPA, for the cost-sensitive transfer learning.

It can be seen that, the results for the standard backpropagation follow the argument on

size of networks and number of model parameters (Sermanet et al. [2013]). MNIST does a

poor job on transferring to SVHN, due to the overfitting of SVHN over MNIST network. In

contrast, SVHN performs well as the primary network to transfer MNIST as the target domain.
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primary Target
Standard Distributed

Train (%) Test (%) Train (%) Test (%)
MNIST SVHN 0.01 29.57 0.24 5.18
SVHN MNIST 0.35 1.04 0.16 0.46

CIFAR-10 CIFAR-100 0.53 68.44 0.29 54.32
CIFAR-100 CIFAR-10 0.11 24.08 0.05 18.24

Table 8.2: Classification errors of standard vs distributed backpropagations, for transfer
learning on fairly balanced domains. Bold values correspond to better performances, which
are the smallest training and test errors on each experiment.

On the other hand, transferring to SVHN domain from MNIST, does not result in

overfitting, when the distributed backpropagation is employed. In both settings of the primary

and target domains, the distributed strategy outperforms the standard backpropagation.

The experiments based on the CIFAR pair, raise interesting results, because both datasets

have the same number of samples, but completely different distributions among the classes.

In practice, CIFAR-100 includes all the classes of CIFAR-10, but CIFAR-10 is not aware of

several classes in CIFAR-100. It can be seen that, CIFAR-10 transfers well to CIFAR-100. This

cannot outperform the baseline performance, although the target network (CIFAR-100) is not

overfitted. All in all, the performance of the distributed backpropagation for transfer learning

is better than the standard scheme and also, outperforms the baselines of the benchmarks.

8.3.2 Transfer Learning on Highly Imbalanced Domains

This scenario pairs the datasets, such that, the similarity of their data distributions, and the

number of classes get minimized. They are also initially trained for different tasks, i.e. number

classification vs object recognition. For implementation, MNIST gray channel is repeated three

times to make a RGB-like colour representation for transferring to CIFAR network. For the

CIFAR, the RGB channels are converted into grayscale to transfer on the MNIST network.

From Table 8.3, it is obvious that the distributed backpropagation outperforms all the

standard results. For the first setup, CIFAR-10 performs better at transfer learning than MNSIT,

although the number of classes are the same.
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primary Target
Standard Distributed

Train (%) Test (%) Train (%) Test (%)
MNIST CIFAR-10 0.43 28.92 0.25 20.85

CIFAR-10 MNIST 0.44 2.37 0.23 0.95
SVHN CIFAR-100 0.71 89.31 0.46 61.10

CIFAR-100 SVHN 0.01 12.18 0.28 7.25

Table 8.3: Classification errors of standard vs distributed backpropagations, for transfer
learning on highly imbalanced domains. Bold values correspond to better performances, which
are the smallest training and test errors on each experiment.

It seems that, CIFAR-10 provides better generalization due to higher diversity among its

classes. Here, the distributed backpropagation performs better than the standard process and,

targeting of MNIST from CIFAR-10 network, results in a performance that is similar to the

baseline outcomes on MNIST in Table 8.1. The second setup leads to the overfitting of SVHN

over CIFAR-100 network, as a result of the large number of samples. The other outcome is

the poor performance of transferring CIFAR-100 to SVHN network. This is the result of very

different contents of primary and target datasets.

The observations show that fine-tuning on the training set, while calculating BPA on the

validation set, result in better generalization of the transferred model. On the other hand,

computing of BPA on training plus validation sets, gives a higher performance. This is due to

the vastly different number of classes in the primary-target domains. Since BPA is employed

to address the imbalance distribution problem, it better captures the distribution of data, by

adjoining both training and validation sets. This is especially true, when fewer classes of the

primary domain, are transferred to the larger number of classes in the target domain.

8.4 Conclusion

In this chapter, a distributed transfer learning algorithm for deep convolutional neural networks,

was proposed. Since fine-tuning of large networks for small datasets mostly led to overfitting,

this provided less susceptibility by breaking the network to single-filter networks of the same

depth as primary network. This was also fed with the target data and BPA was employed to find

the contribution of each single-filter network to the particular task. The experiments confirmed

that the proposed framework improved the accuracy of transfer learning.



Chapter 9

Unified Backpropagation for

Multi-Objective Learning

A common practice in most deep convolutional neural networks, is to employ fully-connected

layers, followed by a Softmax activation to minimize cross-entropy loss. Recent studies has

shown that, substitution of the Softmax objective with SVM or LDA cost functions, is highly

effective to improve the classification performance of deep neural networks. This chapter

proposes a novel paradigm to link the optimization of several objectives through a unified

backpropagation scheme. This alleviates the burden of extensive boosting for each independent

objective functions and avoids complex formulation of multi-objective gradients. Here, several

loss functions are linked through BPA at the time of backpropagation.

Deep learning has been proven to be extremely successful for several applications.

The combination of machine learning methods, with deep neural networks, achieves better

performances. Deep versions of CCA (Andrew et al. [2013]), FA (Clevert et al. [2015]),

PCA (Chan et al. [2015]), SVM (Vinyals et al. [2012]), and finally, LDA (Stuhlsatz et al.

[2012]), have been introduced in the literature. There are two schools of thought about how to

alternate the Softmax layer, so as, to achieve better performance.

The first strategy trains a deep architecture to produce high-order features and give

them to a classifier (Coates et al. [2010]). For example, replacing the Softmax with SVM

as the top layer and minimizing of a standard hinge loss, produces better results in some

deep architectures (Tang [2013]). Another successful practice is LDA which maximizes an

objective, derived from a general eigenvalue problem (Dorfer et al. [2015]). The drawback is

that, the features in the bottom layers are not further fine-tuned with the new objective.

107
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The second strategy trains a combination of objectives, by error backpropagation through

the gradients of their loss functions. It is possible to optimize these objectives with either

boosting methods or multi-objective evolutionary algorithms (Gong et al. [2015]), but the

former needs extensive training of different networks, and the latter requires very complex

formulations for the gradients.

9.1 Method

A novel unified backpropagation scheme is proposed for deep multi-objective learning, based

on BPA of evidence theory, applying to a network that includes different loss functions, such as,

Softmax, SVM, and LDA. In contrast to the boosting method, which trains each loss function

independently to make an ensemble of models, the proposed backpropagation approach, unifies

the gradients of all objective functions.

The advantages of unified backpropagation can be outlined as follows. First, this scheme

mutually optimizes all the objective functions together. In this way, the contribution of each

objective function to the overall classification performance, is managed by sharing the basic

probability masses, among the gradients. Second, this unification is less computationally

expensive than ensemble learning. Third, it prevents more complexity on the formulation

of gradients, for each of the combined loss functions. The experiments for a variety of

scenarios and standard datasets, confirm the advantage of the proposed approach, which

delivers consistent improvements to the performance of deep convolutional neural networks.

9.2 Formulation

A deep convolutional architecture can boost the typical Softmax layer with other classifiers,

using a multi-objective optimization regime. The two widely-used classifiers are SVM and

LDA, employed as the top layer of the deep neural networks.
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Figure 9.1: Multi-objective learning of deep convolutional neural networks. This follows the
common practice of backpropagation in identical convolutional architectures and minimizing
some specific loss functions, via stochastic gradient descent. The trained deep classifiers are
then boosted by a proper ensemble method. The bottleneck results from the need for multiple
instances of training for each of the objective functions. The backpropagation procedures are
thoroughly independent, because each of the loss functions minimize by a specific gradient
formulation, with zero awareness of other ongoing training processes.

Employing SVM, a deep convolutional network optimizes the primal problem of SVM

and backpropagate the gradients of the top layer SVM, to learn the bottom layers. This is in

contrast with fine-tuning, where low-order features are usually trained by Softmax, and top

layers tuned by SVM. It has been shown that the performance on standard benchmarks, is

much better than the networks with Softmax layer at top. The optimization is performed using

stochastic gradient descent method (Chan et al. [2015]).

For LDA as the top layer, the deep architecture is almost the same. The objective of a

deep neural network is reformulated to learn linearly separable features by backpropagation,

because LDA allows to define optimal linear decision boundaries in the latent layers. This

finds linear combinations of low-level features, to maximize the scattering between classes of

data, whilst minimizing the discrepancy within individual classes. The top layer LDA tries to

produce high separation between deep features, rather than, minimizing the norm of prediction

error (Dorfer et al. [2015]).
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Classification of some multiclass datasets, is challenging due to non-uniform distribution

of data (Koço and Capponi [2013]). The accuracy of classification does not seem to be a

suitable objective to optimize, because there may be high accuracy with strong biases towards

some classes (Fawcett [2006]). Although there are many algorithms to deal with imbalanced

data for binary classification (He and Garcia [2009]), the multiclass problem has been usually

addressed by generalization of the binary solutions, with a one-versus-all strategy (Abe et al.

[2004]). For some leaning tasks, optimization of some relevant measures within the imbalance

data distribution, provides alternative measures to the accuracy (Wang and Yao [2012]).

The emergence of new cost-sensitive methods for dealing with imbalanced multiclass

data (Elkan [2001]), has enabled the embedding of misclassification costs, into a cost matrix.

They usually measure the error, based on misclassification costs of individual classes in the

confusion matrix. This matrix is the most informative contingency table in multiclass learning

problems, because it gives the success rate of a classifier for a special class, and the failure rate

on distinguishing that class from other classes. The confusion matrix has proven to be a great

regularizer; smoothing the accuracy among classes (Ralaivola [2012]).

The determination of a probabilistic distribution from the confusion matrix is highly

effective at producing a probability assignment, which contributes to imbalance distribution

problems. The probability assignments can be constructed from recognition, substitution and

rejection rates (Xu et al. [1992]), or both precision and recall rates (Deng et al. [2016]). The

key point is to harvest the maximum possible prior knowledge, provided by the confusion

matrix to overcome the imbalance classification challenge.

9.2.1 Unified Backpropagation

Suppose that Φ = {φ1, . . . , φ|Φ|} is a set of objectives in a multi-objective learning regime,

presented in Figure 9.2. To apply the unified backpropagation, Algorithm 7 is deployed for

each of the loss functions, to come up with a set of normalized probability assignments as,

ΓΦ = {Γφk = ‖Θφk‖2 | ∀ k ∈ [1, |Φ|]} (9.1)

where Θφk follows the same definition as Equation 8.4.
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Figure 9.2: Unified backpropagation for multi-objective learning. In contrast with the
ensemble practice, the backpropagation is unified through BPA. Although each deep
convolutional network holds its specific gradient formulation, sharing of probability masses,
makes a common sense around the statistics of gradient descent in the whole network. In other
words, boosting procedure not only includes the outcome of several objective functions, but
also enhances their mutual learning processes, by unifying their backpropagation.

In each layer l of the kth objective, feedforward propagation is calculated as follows,

a(l)k = σ(w(l)
k a(l−1)

k + b(l)k ) (9.2)

where wk and bk are weights and biases, ak is an activation and σ is a rectification function.

Considering φk as the loss function, the output error holds,

δ
(l)
k = 5ak φk � σ

′
(w(l)

k a(l−1)
k + b(l)k ) (9.3)

The backpropagation error can be stated as,

δ
(l)
k = ((w(l+1)

k )T)δ
(l+1)
k � σ

′
(w(l)

k a(l−1)
k + b(l)k ) (9.4)

For the sake of gradient descent, the weights and biases are updated via,

w(1)
k −→ w(1)

k − η Γφk ∑ δ
(l+1)
k (a(l−1)

k )T

b(1)k −→ b(1)k − η Γφk ∑ δ
(l+1)
k (9.5)
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Algorithm 9 Unified Backpropagation

Input: set of objective functions Φ
Output: multi-objective network

1: Compute ΓΦ (Equation 9.1) by using Algorithm 7

for k = 1 to |Φ| do
for all layers do

2: Compute feadforward activations (Equation 9.2)
3: Calculate backpropagation errors (Equation 9.4)
4: Update weights and biases (Equation 9.5)

end for
end for

For the unified backpropagation, larger Γφk of the kth objective will generate bigger

update rates for weights and biases, than only employing a fix η. This helps to update

only loss functions, which largely affect the overall classification performance, and properly

connect the objectives in the backpropagation process. This also implies that, in spite of

forward-backward propagation, the overall contribution of each objective function is taken

into account. Algorithm 9 wraps up the proposed unification strategy.

9.2.2 Objective Functions

Following the successful practices in the literature, three types of widely-used loss functions

i.e. Softmax, SVM (Tang [2013]), and LDA (Dorfer et al. [2015]) are further investigated.

Suppose that C = {C1, . . . , C|C|} is a set of |C| different classes in the dataset at hand

and the discrete probability distribution pi denotes, to what extent, each sample of set

X = {X1, . . . , X|X |} belongs to class Ci. Assuming ak = {ak1 , . . . , ak|C|} as the output of the

last fully-connected layer for the kth loss function (Equation 9.2), the closed form formulation

of gradients for the above objective functions, can be worked out as follows.
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9.2.2.1 Softmax

For a conventional Softmax activation, pi can be defined as follows,

pi =
eaki

∑|C|j=1 eakj
(9.6)

such that ∑ pi = 1 and the predicted class is yielded by,

yi = arg max pi = arg max ai (9.7)

The Softmax loss function forms as,

φkSo f tmax = −
|C|

∑
j=1

yj log(pj) (9.8)

where its gradient with respect to aki holds,

5aki
φkSo f tmax = pi − yi (9.9)

9.2.2.2 Support Vector Machine

The squared hinge loss for L2-norm binary SVM (ti ∈ {−1,+1}) is defined as,

φkSVM =
1
2

wTw + λ
|C|

∑
i=1

max(0, 1−wTaki ti)
2 (9.10)

that its gradient can be derived as follows,

5aki
φkSVM = −2λtiw

(
max(0, 1−wTaki ti)

)
(9.11)

The multiclass scenario is the extension of the binary objective, using one-vs-rest approach.

Minimizing Equation 9.11 for w, gives the predicted class as,

yi = arg max wiaki ∀ wi ∈ w (9.12)
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9.2.2.3 Linear Discriminant Analysis

The focus is on maximizing the |C| − 1 smallest eigenvalues of the generalized LDA

eigenvalue problem,

Sbe = vSwe (9.13)

such that, Sb is between-class scattering, Sw is within-class scattering, e corresponds to

eigenvectors and v represents the eigenvalues. This leads to a maximization of the discriminant

power of any deep architecture. Hence, the objective can be stated as,

φkLDA =
1

|C| − 1

|C|−1

∑
i=1

vi ∀ vi ∈ v (9.14)

which holds the following gradient (∀ei ∈ e),

5aki
φkLDA =

1
|C| − 1

|C|−1

∑
i=1

ei
T
(

δSb

δaki

− δSw

δaki

)
ei (9.15)

9.3 Experiments

The experiments are conducted for two different scenarios, using MNIST (LeCun et al. [1998]),

CIFAR (Krizhevsky and Hinton [2009]), and SVHN (Netzer et al. [2011]) datasets. In

the first scenario, the unified backpropagation is applied to single-objective learning and its

performance is compared to the baseline of Softmax, SVM and LDA. For the second scenario,

multi-objective learning are considered and multiple loss functions are combined via the

unification backpropagation paradigm. We report the results for standard deep architectures,

implemented by the Oxford Visual Geometry Group (Vedaldi and Fulkerson [2008]).

9.3.1 Single-Objective Learning

In this scenario, the advantage of the unified backpropagation (Unified) is validate for each

of the individual objective functions under examination. We provide the outcomes for the

Softmax, SVM, and LDA as common loss functions among deep convolutional networks.
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Tables 9.1, 9.2, and 9.3 show the outcomes of this scenario. It can be seen that, the

unified backpropagation is able to consistently improve the classification performance on deep

convolutional networks, and provides smaller training-test errors. According to the Table 9.1,

the unified backpropagation outperforms all the baselines. The greatest improvement belongs

to CIFAR-10, which reduces the test error from 22.72% to 18.77%. The smallest improvement

on the training error, comes from the same datasets. It seems that, in spite of larger training

error, better generalization leads to considerable enhancement in the overall performance.

In Table 9.2, the best improvement in test error goes to CIFAR-100, which decreases from

49.11% to 39.76%. Although the number of classes are higher for other datasets, the unified

backpropagation successfully avoids biases for SVM and hence, the overall performance is

considerably improved. Looking at the Table 9.3, the best result is recorded for MNIST.

The unification paradigm outperforms in both training and test errors, on all the experimental

datasets. This is the result of distinction, imposed by LDA. Since LDA pushes the separation

among classes, rather than the likelihood of predictions and labels (Softmax,SVM), the

training-test errors reduce accordingly in all the experiments. This confirms that the proposed

scheme is successful at providing better learning practices, compared to the typical methods.

Figures 9.3 and 9.4 present the comparative plots for MNIST and CIFAR-10, respectively.

It is obvious that the unified backpropagation provides better generalization, and improves

the training-test errors of the classification task. In Figure 9.3, the gap between training

and validation errors, hugely reduces by the proposed unification method. It means that, this

provides better generalization for the trained model. the energy of loss function for Softmax is

lower than the proposed method. Although this might result in the better performance for the

former, the latter outperforms, in regards, to the test errors. The reason lies in the capability

of this method to deal with non-smooth decision boundaries of non-convex objectives in deep

neural networks. This is a critical point, especially when the classes are highly correlated in

the datasets, as they are for MNSIT or CIFAR-10.
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Dataset
Softmax Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.09 0.65 0.04 0.32

CIFAR-10 1.32 22.72 1.56 18.77
CIFAR-100 0.17 50.90 0.21 48.01

SVHN 0.13 3.81 0.07 2.59

Table 9.1: Classification errors for Softmax and the unified backpropagation. Bold values
indicate the minimum training-test errors for each datasets. The proposed unification approach
outperforms in test errors. Softmax produces greater training precisions for CIFAR datasets,
than MNIST and SVHN.

Dataset
SVM Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.07 0.53 0.08 0.51

CIFAR-10 1.27 19.87 1.47 17.64
CIFAR-100 0.13 49.11 0.17 39.76

SVHN 0.12 3.46 0.09 2.38

Table 9.2: Classification errors for SVM and the unified backpropagation. Bold values indicate
the minimum training-test errors for each datasets. The unification paradigm gives the best test
performances, but SVM outperforms on training errors for all datasets, except SVHN.

Dataset
LDA Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.07 0.42 0.05 0.38

CIFAR-10 0.94 7.39 0.87 6.95
CIFAR-100 0.15 19.63 0.13 18.46

SVHN 0.06 2.78 0.06 2.27

Table 9.3: Classification errors for LDA and the unified backpropagation. Bold values indicate
the minimum training-test errors for each datasets. The best performances come from the
proposed unification scheme.
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Figure 9.4 shows that the generalization for CIFAR-10, imposed by the unified

backpropagation, is much higher than MNIST. As mentioned before, less correlation between

classes in CIFAR-100 dataset, results in a better job at tuning the model parameters by this

backpropagation strategy. Another observation for CIFAR-10 is that, the pattern of variations

in the baseline and outcomes, is not highly aligned with MNIST. It seems that in some epochs,

the unified backpropagation forces the learning process towards special classes, which do not

contribute to the overall precision of classification.

9.3.2 Multi-Objective Learning

This scenario applies the unified backpropagation to combine Softmax, SVM, and LDA

objective functions. The baselines are produced by ensemble learning via Adaboost algorithm.

Tables 9.4, 9.5, and 9.6 summarize the training-test errors on all the experimental datasets, for

Softmax + SVM, Softmax + LDA, and Softmax + SVM + LDA, powered by the proposed

backpropagation paradigm. It can be seen that, almost everywhere, the proposed unification

improves the classification performance. The only exception is Softmax + LDA on CIFAR-100

dataset, where this method is not able to outperform the baseline.

Table 9.4 shows the outcomes of the unification on Softmax and SVM combination. It

is obvious that, the unified backpropagation improves test errors for all the experiments.

The training errors are all improved, except on CIFAR-100 dataset. In table 9.5, we report

the errors for the joint Softmax and LDA. Here, all the improvements come from the

unified backpropagation. On CIFAR-100, training error increases from 0.9% to 1.5%, and

on CIFAR-100 the testing error jumps from 18.27% to 35.28%. Since these degradations

belong to CIFAR, it can be concluded that, LDA is not that successful at separating their

highly-correlated classes.

Finally, Table 9.6 gathers the results of experiments for the composition of Softmax, SVM,

and LDA. It is clear that the unification scheme outperforms the baseline on all training-test

errors, except for the training on CIFAR-10 and test on CIFAR-100 datasets. It seems that

SVM makes a significant contribution towards compensating LDA’s disadvantage on CIFAR

datasets, but that is not enough for the unified backpropagation to take an edge over baseline.
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Dataset
Softmax + SVM Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.08 0.57 0.07 0.45

CIFAR-10 1.54 18.72 1.15 15.82
CIFAR-100 0.23 48.85 0.91 38.58

SVHN 0.11 3.27 0.08 2.48

Table 9.4: Classification errors for Softmax + SVM and the unified backpropagation. Bold
values indicate the minimum training-test errors for each datasets. The test errors show
considerable improvements over the baseline performances.

Dataset
Softmax + LDA Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.07 0.44 0.05 0.41

CIFAR-10 0.90 7.51 1.50 6.81
CIFAR-100 0.18 18.27 0.71 35.28

SVHN 0.09 3.64 0.06 2.41

Table 9.5: Classification errors for Softmax + LDA and the unified backpropagation. Bold
values indicate the minimum training-test errors for each datasets. This approach improves the
precision, when compared with the baseline for all datasets, except CIFAR-100.

Dataset
Softmax + SVM + LDA Unified
Train (%) Test (%) Train (%) Test (%)

MNIST 0.08 0.38 0.05 0.30
CIFAR-10 0.78 5.96 1.83 5.44
CIFAR-100 1.35 22.49 0.68 35.13

SVHN 0.08 3.01 0.07 2.34

Table 9.6: Classification errors for Softmax + SVM + LDA and the unified backpropagation.
Bold values indicate the minimum training-test errors for each datasets. This paradigm
outperforms the baseline on almost all the experimental datasets, except CIFAR-100.
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Dataset
Baseline Unified

Train (%) Test (%) Train (%) Test (%)
MNIST 0.08 0.38 0.05 0.30

CIFAR-10 0.94 7.39 1.83 5.44
CIFAR-100 0.18 18.27 0.13 18.46

SVHN 0.07 2.78 0.06 2.27

Table 9.7: Minimum test errors for the baseline and unified backpropagation. Bold values
indicate the minimum training-test errors for each datasets. The unification strategy is
consistent at improving the classification performance of deep convolutional networks.

All in all, LDA does a better job than SVM in both of the baseline and unified

backpropagation, and the proposed method performs better, when all the objectives come

together. The best improvement goes to CIFAR-100 dataset, which reduces the test error

from 38.58% for Softmax + SVM to 35.28% for Softmax + LDA, followed by 35.13% for

Softmax + SVM + LDA. For CIFAR-10, Softmax + LDA improves the performance quite well,

in comparison with, Softmax + SVM. Although the joint venture of all classifiers, generates

higher precisions in test, the lowest training errors, varies between CIFAR-10 for Softmax +

SVM, MNIST and SVHN for Softmax + LDA, and CIFAR-100 for Softmax + SVM + LDA.

9.3.3 Discussion

Considering both of the experimental scenarios, Table 9.7 summarizes the minimum test

errors, and its corresponding training errors for each of the datasets under examination. The

unified backpropagation either outperforms baselines by high margins (5.44% vs 7.39% for

CIFAR-10) or follows them by close rates (18.46% vs 18.27% for CIFAR-100). This confirms

advantage of the proposed backpropagation for the classification.

On the other hand, the best results for the unification method, go to multi-objective learning

on MNIST & CIFAR-100 and single-objective learning on CIFAR-100 & SVHN datasets.

Although further investigations remain, initial results indicate that multi-objective learning

performs better on a small or medium number of samples-classes, while single-objective

learning performs best on a large number of samples-classes. This is due to the fact that

the multi-objective regime is not able to cope, with either complex data distributions, or

highly-correlated classes, when several objectives contradict each other.
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Figure 9.3: Unified backpropagation for MNIST dataset. For Softmax baseline (chart 1), the
training-validation losses and top-1 errors, follow each other accordingly, but the gap between
them is fairly wide. By the unification approach (chart2), the validation gives higher energy
than the training, but the errors are considerably smaller than the baseline. This also provides
better generalization, due to the closer gap between training-validation errors. In spite of
the higher level of energy (chart 3), the unified backpropagation consistently improves the
precision of Softmax.
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Figure 9.4: Unified backpropagation for CIFAR-10 dataset. Compared to the Softmax baseline
(chart 1), the unification scheme (chart 2) generates larger objective values. Due to a better fit to
the data distribution, validation error follows training error, quite closely and outperforms the
baseline of Softmax. A higher level of validation energy (chart3) generates better performance,
when the unified backpropagation is employed. With respect to MNIST dataset, some high
fluctuation spots appear in the validation errors, but the overall trend shows a reasonably
smooth decay rate.
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9.4 Conclusion

In this chapter, a unified backpropagation scheme was proposed to update the filters in a

multi-objective convolutional network. This was in contrast with standard practices for a CNN

that generally employed multiple objective functions (SVM, Softmax, LDA), trained them

independently and then, assembled together, based on their performances. Here, BPA merged

the outputs of different objectives and backpropagated the error to update the filters from all

the convolutional layers. The experiments confirmed that the proposed scheme outperformed

other conventional multi-objective regimes.
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Conclusion

Visual scene understanding has always been a matter of interest to computer vision community.

The emergence of deep neural networks, introduces automatic feature learning as a powerful

approach to replace the feature hand-crafting, to address different tasks. Deep learning lets

train the models with huge number of parameters and solve high-dimensional, non-convex

optimization problems. One of the well-known statistical methods to tackle spaces of high

dimensions, is discriminant analysis that imposes better class discrepancy. This thesis proposed

Deep Fisher Discriminant Learning to link Fisher discrimination and deep learning. It targeted

semantic segmentation, texture classification and object recognition as important challenges in

visual scene understanding. The theoretical justifications, supported by experimental results,

confirmed the advantage of the proposed algorithms to improve the performance over various

standard benchmarks in the literature.

10.1 Summary

Following the introduction (Chapter 1) and literature review (Chapter 2), Chapter 3 introduced

Fisher discriminant analysis (dimension reduction) and then, reformulated this to produce a

supervised projection into a high-dimensional space, spanned by the number of classes in the

dataset under study (dimension expansion).
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Part I (Chapter 4) on semantic segmentation, proposed a supervised colour transformation

based on Fisher discrimination. The process began with a supervised projection from

primary colour space into a new space, spanned by the number of classes, and continued

by backprojection into an intermediate colour space. The former, imposed distinction across

classes by minimizing the ratio of inter-intra class scatterings, while the latter, exposed the

distances in the new colour space by a subspace mapping. This space was scaled-translated

to form the target colour space. The experimental results showed advantage of the supervised

colour transformation, over other subspace mappings and colour spaces, to improve global and

average precisions of pixelwise semantic segmentation.

Part II (Chapters 5, 6) on texture classification, introduced some new deep neural

architectures to train banks of texture filters. The supremacy of deep convolutional neural

networks for automatic feature learning, led to the introduction of Fisher convolutional

neural network and Fisher convolutional autoencoder network. The experiments on several

texture datasets and deep descriptors, confirmed the advantage of these deep architectures

to produce considerable improvements over the recently published benchmarks. The Fisher

convolutional neural network was found to be computationally efficient, due to the learning

of filter parameters instead of whole texture filters, expanding into the large number of filters

for better generalization, and moving towards deeper layers for quality features. The Fisher

convolutional autoencoder network was able to train both of the parametric and separable

texture filters. This employed Fisher discrimination to impose higher distinction among texture

classes in the datasets at hand. It resulted in arranging along independent stacks, so as, to train

each texture filter in different depths, based on the complexity of patterns under study, and the

ability of each filter to extract high-order convolutional features.

Part III (Chapters 7, 8, 9) on object recognition, discussed some novel contributions toward

pooling, transfer learning, and multi-objective learning in deep neural networks. They were

all inspired by Fisher discrimination and basic probability assignment of the evidence theory.

First, a new pooling scheme, called multipartite pooling, projected the activations to a new

high-dimensional space and then, scored them by an accumulative bipartite ranking approach.

These scores could be used to pick the highly informative activation instances in the pooling

layers of any deep convolutional architectures.
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Second, a novel distributed backpropagation strategy for transfer learning, tackled the

optimization complexity of highly non-convex objective functions. This also resolved the

problem of imbalanced data distributions of the primary and target domains, across several

deep single-filter learners. Third, a unified backpropagation scheme, linked the gradients of

multiple loss functions to update the parameters of a multi-objective network, at the time

of backpropagation. This avoided biases in imbalanced data distributions, and improved the

classification performance of single-multi objective learning for deep convolutional networks.

10.2 Future Work

To further extend the ideas presented in this thesis, the following lines of research should be

considered for future work:

• In addition to the Fisher convolutional and Fisher autoencoder networks, Fisher

discrimination may introduce a novel set of deep architectures, that optimize

discriminating objectives, rather than common error functions. Since discriminant

analysis is a distributed algorithm in nature, high-performance parallel deep learning

could possibly be achieved in these paradigms.

• Multipartite ranking, transfer learning, and multi-objective learning by Fisher

discrimination, may have applications in other areas of machine learning, such as,

natural language processing and machine translation.

• Scene understanding is one of the hardest challenges in computer vision. This thesis

showed several successful practices of novel deep neural architectures, that addressed

some specific tasks, such as, segmentation, classification and recognition. This work has

the potential to improve the performance of other visual processing applications, such

as, in biometrics, surveillance and compression.
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